2016
Implantable tissue-engineered blood vessels from human induced pluripotent stem cells
Gui L, Dash BC, Luo J, Qin L, Zhao L, Yamamoto K, Hashimoto T, Wu H, Dardik A, Tellides G, Niklason LE, Qyang Y. Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials 2016, 102: 120-129. PMID: 27336184, PMCID: PMC4939127, DOI: 10.1016/j.biomaterials.2016.06.010.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cellsVascular diseaseBlood vesselsAlpha-smooth muscle actinSmooth muscle myosin heavy chainActive vascular remodelingSmooth muscle cellsMuscle myosin heavy chainTissue-engineered blood vesselsStem cellsAbundant collagenous matrixPluripotent stem cellsInterposition graftAllogeneic graftsVascular remodelingΑ-SMANude ratsMuscle actinMyosin heavy chainClinical useMuscle cellsFunctional vascular smooth muscle cellsPatientsFunctional tissue-engineered blood vesselGraft
2010
Utility of Telomerase-pot1 Fusion Protein in Vascular Tissue Engineering
Petersen TH, Hitchcock T, Muto A, Calle EA, Zhao L, Gong Z, Gui L, Dardik A, Bowles DE, Counter CM, Niklason LE. Utility of Telomerase-pot1 Fusion Protein in Vascular Tissue Engineering. Cell Transplantation 2010, 19: 79-87. PMID: 19878625, PMCID: PMC2850951, DOI: 10.3727/096368909x478650.Peer-Reviewed Original ResearchMeSH KeywordsAdenoviridaeAdultAnimalsBioreactorsBlood VesselsCell Culture TechniquesCells, CulturedCellular SenescenceCollagenGenetic VectorsGraft SurvivalHumansMaleMuscle, Smooth, VascularRatsRats, NudeRecombinant Fusion ProteinsShelterin ComplexTelomeraseTelomere-Binding ProteinsTissue EngineeringTransfectionConceptsTransient deliveryVascular tissue engineeringRegenerative medicineTissue engineeringRegenerative medicine applicationsTissue-engineered constructsLentiviral vectorsMedicine applicationsImportant stumbling blockTelomeric repeat amplification protocolElderly human donorsBetter performanceAmplification protocolEngineeringDeliveryTransient reconstitutionDifferentiated cellsAdenoviral deliveryRepeat amplification protocolFusion proteinTransgeneHuman smooth muscle cellsStumbling blockGreater collagen contentProtocol
2007
Interferon-&ggr; Induces Human Vascular Smooth Muscle Cell Proliferation and Intimal Expansion by Phosphatidylinositol 3-Kinase–Dependent Mammalian Target of Rapamycin Raptor Complex 1 Activation
Wang Y, Bai Y, Qin L, Zhang P, Yi T, Teesdale SA, Zhao L, Pober JS, Tellides G. Interferon-&ggr; Induces Human Vascular Smooth Muscle Cell Proliferation and Intimal Expansion by Phosphatidylinositol 3-Kinase–Dependent Mammalian Target of Rapamycin Raptor Complex 1 Activation. Circulation Research 2007, 101: 560-569. PMID: 17656678, DOI: 10.1161/circresaha.107.151068.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdenoviridaeAnimalsAortaCell ProliferationCells, CulturedChromonesCoronary Artery DiseaseCoronary VesselsEnzyme InhibitorsGene Transfer TechniquesGenetic VectorsGraft RejectionHumansHyperplasiaImmunosuppressive AgentsInterferon-gammaMechanistic Target of Rapamycin Complex 1MiceMice, SCIDMorpholinesMultiprotein ComplexesMuscle, Smooth, VascularMyocytes, Smooth MusclePhosphatidylinositol 3-KinasesPhosphoinositide-3 Kinase InhibitorsPhosphorylationProteinsRegulatory-Associated Protein of mTORRibosomal Protein S6 Kinases, 70-kDaSirolimusTime FactorsTissue Culture TechniquesTOR Serine-Threonine KinasesTranscription FactorsTransplantation, HeterologousTunica IntimaConceptsVascular smooth muscle cellsVascular smooth muscle cell proliferationS6 kinase 1 activationSmooth muscle cellsRibosomal protein S6 kinase 1Mammalian targetProtein S6 kinase 1Muscle cellsS6 kinase 1Smooth muscle cell proliferationMTORC1 inhibitor rapamycinMuscle cell proliferationCell proliferationKinase 1 activationIntimal expansionFurther mechanistic insightsHuman vascular smooth muscle cell proliferationHuman coronary artery graftsKinase 1Species specificityInhibitor rapamycinSerum-free conditionsCell growthCellular proliferationImmunodeficient mouse recipients