2020
Tissue-Engineered Vascular Grafts with Advanced Mechanical Strength from Human iPSCs
Luo J, Qin L, Zhao L, Gui L, Ellis MW, Huang Y, Kural MH, Clark JA, Ono S, Wang J, Yuan Y, Zhang SM, Cong X, Li G, Riaz M, Lopez C, Hotta A, Campbell S, Tellides G, Dardik A, Niklason LE, Qyang Y. Tissue-Engineered Vascular Grafts with Advanced Mechanical Strength from Human iPSCs. Cell Stem Cell 2020, 26: 251-261.e8. PMID: 31956039, PMCID: PMC7021512, DOI: 10.1016/j.stem.2019.12.012.Peer-Reviewed Original Research
2011
Development of Novel Biodegradable Polymer Scaffolds for Vascular Tissue Engineering
Gui L, Zhao L, Spencer RW, Burghouwt A, Taylor MS, Shalaby SW, Niklason LE. Development of Novel Biodegradable Polymer Scaffolds for Vascular Tissue Engineering. Tissue Engineering Part A 2011, 17: 1191-1200. PMID: 21143045, PMCID: PMC3079248, DOI: 10.1089/ten.tea.2010.0508.Peer-Reviewed Original ResearchConceptsTissue engineering approachesTissue-engineered blood vesselsBiodegradable polymer scaffoldsVascular tissue engineeringPolyglycolic acidDegradation profileTissue mechanicsEngineering approachVessel mechanicsPolymers IIIPolymer scaffoldsBiodegradable scaffoldsTissue engineeringPolymeric materialsDegradation characteristicsMatrix-rich tissuesSynthetic polymersPolymer IPolymer IIPolymer fragmentsAqueous conditionsPolymersPotential applicationsSimilar degradation profilesMechanics