2018
Mutations in PERP Cause Dominant and Recessive Keratoderma
Duchatelet S, Boyden LM, Ishida-Yamamoto A, Zhou J, Guibbal L, Hu R, Lim YH, Bole-Feysot C, Nitschké P, Santos-Simarro F, de Lucas R, Milstone LM, Gildenstern V, Helfrich YR, Attardi LD, Lifton RP, Choate KA, Hovnanian A. Mutations in PERP Cause Dominant and Recessive Keratoderma. Journal Of Investigative Dermatology 2018, 139: 380-390. PMID: 30321533, PMCID: PMC6586468, DOI: 10.1016/j.jid.2018.08.026.Peer-Reviewed Original ResearchConceptsC-terminal truncationsIntercellular adhesionEpidermal biologyEpidermal differentiation markersEpidermal homeostasisDesmosomal componentsDesmosomal proteinsGenetic determinantsDifferentiation markersEssential roleMutationsUnrelated kindredsDesmosomesProteinPERPOlmsted syndromePalmoplantar keratodermaGenesCrucial componentHeterozygosityBiologyHomeostasisKeratinization disordersKeratodermaHomozygosity
2015
Crystal Structure of Human Profilaggrin S100 Domain and Identification of Target Proteins Annexin II, Stratifin, and HSP27
Bunick CG, Presland RB, Lawrence OT, Pearton DJ, Milstone LM, Steitz TA. Crystal Structure of Human Profilaggrin S100 Domain and Identification of Target Proteins Annexin II, Stratifin, and HSP27. Journal Of Investigative Dermatology 2015, 135: 1801-1809. PMID: 25760235, PMCID: PMC4466033, DOI: 10.1038/jid.2015.102.Peer-Reviewed Original ResearchMeSH Keywords14-3-3 ProteinsAnnexin A2Biomarkers, TumorCells, CulturedCrystallizationEpidermal CellsEpidermisExoribonucleasesFilaggrin ProteinsHSP27 Heat-Shock ProteinsHumansIntermediate Filament ProteinsKeratinocytesProtein BindingProtein TransportS100 ProteinsSensitivity and SpecificitySpectrometry, FluorescenceConceptsÅ resolution crystal structureProtein-protein interactionsHuman profilaggrinCalcium-binding domainKeratinocyte terminal differentiationMolecular functionsProtein interactionsTerminal domainShock protein 27Cell envelopeIdentification of targetsN-terminusMolecular approachesTerminal differentiationNormal epidermal barrierHydrophobic pocketSpecific functionsAnnexin IIStable dimerMolecular interfaceProtein 27Proteolytic productsProfilaggrinProteinCrystal structure
1992
The Core Protein of Epican, a Heparan Sulfate Proteoglycan on Keratinocytes, Is an Alternative Form of CD44
Kugelman L, Ganguly S, Haggerty J, Weissman S, Milstone L. The Core Protein of Epican, a Heparan Sulfate Proteoglycan on Keratinocytes, Is an Alternative Form of CD44. Journal Of Investigative Dermatology 1992, 99: 887-891. PMID: 1281868, DOI: 10.1111/1523-1747.ep12614896.Peer-Reviewed Original ResearchConceptsHeparan sulfate proteoglycanCore proteinForm of CD44Human keratinocyte cDNA libraryDeduced protein sequenceAmino acid domainProximal extracellular domainKeratinocyte cDNA librarySulfate proteoglycanAcid domainCDNA libraryProtein sequencesGlycosylation sitesProteolysis siteExtracellular domainAdditional domainsAmino acidsProteinEpicanLeukocyte formCD44ProteoglycansDomainMonoclonal antibodiesKeratinocytesIdentification and Characterization of a Cell Surface Proteoglycan on Keratinocytes
Haggerty J, Bretton R, Milstone L. Identification and Characterization of a Cell Surface Proteoglycan on Keratinocytes. Journal Of Investigative Dermatology 1992, 99: 374-380. PMID: 1401993, DOI: 10.1111/1523-1747.ep12616087.Peer-Reviewed Original ResearchConceptsCore proteinCell-cell contactIntercellular spacesCore protein moleculesCell surface proteoglycansCell extractsSurface proteoglycansEnzymatic deglycosylationProteinProtein moleculesSmall formsProteoglycansEpicanWestern immunoblotCD44 familyWestern blotSkin cellsHeparan sulfateHuman keratinocytesThe Core Protein of Epican, a Heparan Sulfate Proteoglycan on Keratinocytes, Is an Alternative Form of CD44
Kugelman L, Ganguly S, Haggerty J, Weissman S, Milstone L. The Core Protein of Epican, a Heparan Sulfate Proteoglycan on Keratinocytes, Is an Alternative Form of CD44. Journal Of Investigative Dermatology 1992, 99: 381-385. DOI: 10.1111/1523-1747.ep12616092.Peer-Reviewed Original ResearchHeparan sulfate proteoglycanCore proteinForm of CD44Human keratinocyte cDNA libraryDeduced protein sequenceAmino acid domainProximal extracellular domainKeratinocyte cDNA librarySulfate proteoglycanAcid domainCDNA libraryProtein sequencesGlycosylation sitesProteolysis siteExtracellular domainAdditional domainsAmmo acidsProteinEpicanLeukocyte formCD44ProteoglycansDomain
1981
Different polypeptides form the intermediate filaments in bovine hoof and esophageal epithelium and in aortic endothelium.
Milstone L, McGuire J. Different polypeptides form the intermediate filaments in bovine hoof and esophageal epithelium and in aortic endothelium. Journal Of Cell Biology 1981, 88: 312-316. PMID: 7193680, PMCID: PMC2111748, DOI: 10.1083/jcb.88.2.312.Peer-Reviewed Original ResearchConceptsAmino acid sequence homologyFilament-forming proteinsPeptide mapsLimited proteolytic digestionSDS-polyacrylamide gelsDifferent bovine tissuesSequence homologyDifferent polypeptidesEndothelial cellsCultured endothelial cellsPolypeptideIntermediate filamentsProteolytic digestionPolyacrylamide gelsBovine tissuesFilamentsCellsFragmentsHomologyEpitheliumProteinBovine hoofAortic endotheliumEsophageal epitheliumViable portion
1975
Rates of protein synthesis in explanted embryonic chick lens epithelia: Differential stimulation of δ-crystallin synthesis
Milstone L, Piatigorsky J. Rates of protein synthesis in explanted embryonic chick lens epithelia: Differential stimulation of δ-crystallin synthesis. Developmental Biology 1975, 43: 91-100. PMID: 1149925, DOI: 10.1016/0012-1606(75)90133-5.Peer-Reviewed Original ResearchConceptsChick lens epitheliumΔ-crystallin synthesisProtein synthesisΔ-crystallinDifferential protein synthesisLens fiber cellsLens fiber differentiationLens epitheliumProtein degradationFiber cellsFiber differentiationBulk proteinTotal protein synthesisRate of synthesisIntracellular valineLabeling periodNumber of cellsProteinFetal calf serumCellsDifferential stimulationBiochemical changesCalf serumTotal proteinEpithelium