2010
Specific and rapid effects of acoustic stimulation on the tonotopic distribution of Kv3.1b potassium channels in the adult rat
Strumbos J, Polley D, Kaczmarek L. Specific and rapid effects of acoustic stimulation on the tonotopic distribution of Kv3.1b potassium channels in the adult rat. Neuroscience 2010, 167: 567-572. PMID: 20219640, PMCID: PMC2854512, DOI: 10.1016/j.neuroscience.2010.02.046.Peer-Reviewed Original ResearchMeSH KeywordsAcoustic StimulationAdaptation, PhysiologicalAnimalsAntibody SpecificityAuditory PathwaysAuditory ThresholdImmunohistochemistryIon Channel GatingNerve Tissue ProteinsNeuronal PlasticityRatsRats, Sprague-DawleyReaction TimeRhombencephalonShaw Potassium ChannelsSound LocalizationSynaptic TransmissionTime FactorsUp-RegulationConceptsTotal cellular levelsCytoplasmic C-terminusCellular levelVoltage-gated potassium channel subunitsPotassium channel subunitsTonotopic distributionAdult ratsC-terminusChannel proteinsChannel subunitsSound localization circuitIon channelsProteinExperience-dependent plasticityCultured neuronsPotassium channelsHigh-frequency stimuliAcute slicesMedial nucleusSynaptic activityAuditory neuronsKv3.1 proteinMin of exposureAction potentialsAcoustic stimulation
2005
Actions of BAX on Mitochondrial Channel Activity and on Synaptic Transmission
Jonas EA, Hardwick JM, Kaczmarek LK. Actions of BAX on Mitochondrial Channel Activity and on Synaptic Transmission. Antioxidants & Redox Signaling 2005, 7: 1092-1100. PMID: 16115013, DOI: 10.1089/ars.2005.7.1092.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBcl-2-Associated X ProteinBcl-X ProteinCell MembraneElectrophysiologyIntracellular MembranesLiposomesLoligoMitochondriaMultigene FamilyNeurotransmitter AgentsPatch-Clamp TechniquesPeptidesPresynaptic TerminalsProtein Structure, TertiarySynapsesSynaptic TransmissionTime FactorsConceptsMitochondrial membraneBcl-2 family proteins BaxCell deathOuter mitochondrial membraneAction of BaxMitochondrial channel activityChannel activityNormal physiological settingsAntiapoptotic Bcl-xL proteinBcl-xL proteinDeath channelMitochondrial architectureMitochondrial channelsProapoptotic fragmentsLarge conductance channelPresynaptic terminalsBcl-xL.Proapoptotic proteinsAlternative functionsProtein BaxPhysiological settingsPhysiological roleSynaptic transmissionBaxNeurotransmitter releaseRegulation of the timing of MNTB neurons by short-term and long-term modulation of potassium channels
Kaczmarek LK, Bhattacharjee A, Desai R, Gan L, Song P, von Hehn CA, Whim MD, Yang B. Regulation of the timing of MNTB neurons by short-term and long-term modulation of potassium channels. Hearing Research 2005, 206: 133-145. PMID: 16081004, DOI: 10.1016/j.heares.2004.11.023.Peer-Reviewed Original ResearchConceptsAnteroventral cochlear nucleusPotassium channelsAuditory pathwayAction potentialsCentral auditory pathwayVoltage-dependent potassium channelsMammalian auditory pathwayAmount of neurotransmitterProtein phosphorylationMNTB neuronsGene expressionBushy cellsPrincipal neuronsTrapezoid bodyCochlear nucleusIntrinsic excitabilityMedial nucleusVoltage-dependent channelsFiring patternsNeuronsAmplitude of currentsKv1 familySound stimuliLong-term modulationSound localization
2004
Exposure to Hypoxia Rapidly Induces Mitochondrial Channel Activity within a Living Synapse*
Jonas EA, Hickman JA, Hardwick JM, Kaczmarek LK. Exposure to Hypoxia Rapidly Induces Mitochondrial Channel Activity within a Living Synapse*. Journal Of Biological Chemistry 2004, 280: 4491-4497. PMID: 15561723, DOI: 10.1074/jbc.m410661200.Peer-Reviewed Original ResearchConceptsMitochondrial channel activityMitochondrial membraneChannel activityBcl-xLBcl-2 family proteinsPro-apoptotic fragmentsOuter mitochondrial membraneTrigger cell deathZ-VAD-FMKBenzyloxycarbonyl-VADFamily proteinsSynaptic responsesMulticonductance channelLarge conductance channelFluoromethyl ketoneCell deathMinutes of hypoxiaResponses of neuronsNeuronal functionSquid giant synapseSynaptic mitochondriaEarly eventsSynaptic functionHypoxic conditionsNeuronal deathKv1.3 Channel Gene-Targeted Deletion Produces “Super-Smeller Mice” with Altered Glomeruli, Interacting Scaffolding Proteins, and Biophysics
Fadool DA, Tucker K, Perkins R, Fasciani G, Thompson RN, Parsons AD, Overton JM, Koni PA, Flavell RA, Kaczmarek LK. Kv1.3 Channel Gene-Targeted Deletion Produces “Super-Smeller Mice” with Altered Glomeruli, Interacting Scaffolding Proteins, and Biophysics. Neuron 2004, 41: 389-404. PMID: 14766178, PMCID: PMC2737549, DOI: 10.1016/s0896-6273(03)00844-4.Peer-Reviewed Original ResearchMeSH Keywords14-3-3 ProteinsAdaptor Proteins, Vesicular TransportAnimalsBehavior, AnimalBlotting, WesternBody WeightBrain-Derived Neurotrophic FactorCalcium ChannelsCells, CulturedDensitometryDifferential ThresholdDiscrimination, PsychologicalDose-Response Relationship, DrugDrinkingElectric StimulationEmbryo, MammalianEnergy IntakeExploratory BehaviorGene DeletionGRB10 Adaptor ProteinHabituation, PsychophysiologicHumansInsulinKidneyKineticsKv1.3 Potassium ChannelMembrane PotentialsMiceMice, KnockoutMotor ActivityNerve Tissue ProteinsNeuronsNeurotoxinsNuclear Matrix-Associated ProteinsOdorantsOlfactory BulbPatch-Clamp TechniquesPotassium ChannelsPotassium Channels, Voltage-GatedProteinsRas ProteinsReceptor, trkBReverse Transcriptase Polymerase Chain ReactionRNA, MessengerScorpion VenomsSensory ThresholdsSrc-Family KinasesTime FactorsTyrosine 3-MonooxygenaseConceptsKv1.3-/- miceProtein-protein interactionsGene-targeted deletionKv1.3-null miceSignal transductionScaffolding proteinSignaling cascadesChannel genesC-type inactivationDeletionMembrane potentialNull miceOlfactory codingDetection of odorsPotassium channelsKv1.3 channelsProteinSense of smellSlow inactivation kineticsWild-type miceTransductionGenesOlfactory bulb mitral cellsMiceRole
1999
Prolonged Activation of Mitochondrial Conductances During Synaptic Transmission
Jonas E, Buchanan J, Kaczmarek L. Prolonged Activation of Mitochondrial Conductances During Synaptic Transmission. Science 1999, 286: 1347-1350. PMID: 10558987, DOI: 10.1126/science.286.5443.1347.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsCalciumCalcium ChannelsDecapodiformesElectric ConductivityElectric StimulationIntracellular MembranesIon ChannelsIon TransportMicroscopy, ElectronMitochondriaPatch-Clamp TechniquesPorinsPresynaptic TerminalsSynaptic TransmissionTime FactorsVoltage-Dependent Anion ChannelsConceptsChannel activityIon channel activityMitochondrial membraneOnly organellesIntracellular organellesIntact cellsIon channelsMitochondriaOrganellesLarge conductanceTens of secondsPresynaptic terminalsIon transportSynaptic transmissionSynaptic stimulationConductanceElectron microscopyPatch-clamp techniqueMembraneActivityCellsActivationSquidStimulation
1995
Modulation of the inactivation of voltage-dependent potassium channels by cAMP
Chung S, Kaczmarek L. Modulation of the inactivation of voltage-dependent potassium channels by cAMP. Journal Of Neuroscience 1995, 15: 3927-3935. PMID: 7751955, PMCID: PMC6578223, DOI: 10.1523/jneurosci.15-05-03927.1995.Peer-Reviewed Original Research
1987
Xenopus Oocytes Injected with Rat Uterine RNA Express Very Slowly Activating Potassium Currents
Boyle M, Azhderian E, MacLusky N, Naftolin F, Kaczmarek L. Xenopus Oocytes Injected with Rat Uterine RNA Express Very Slowly Activating Potassium Currents. Science 1987, 235: 1221-1224. PMID: 2434999, DOI: 10.1126/science.2434999.Peer-Reviewed Original ResearchConceptsUterine smooth muscleSmooth musclePotassium currentAction potentialsVoltage-dependent potassium currentsInfluence of estrogenUteri of estrogenXenopus Oocytes InjectedOvariectomized ratsRat brainProlonged burstsEstrogenRepetitive burstsNegative membrane potentialsInjected oocytesRatsExcitable tissuesMuscleXenopus oocytesMembrane potentialOocytesDepolarizationMyometriumUterusBrain
1983
Calcium entry causes a prolonged refractory period in peptidergic neurons of Aplysia
Kaczmarek L, Kauer J. Calcium entry causes a prolonged refractory period in peptidergic neurons of Aplysia. Journal Of Neuroscience 1983, 3: 2230-2239. PMID: 6631477, PMCID: PMC6564640, DOI: 10.1523/jneurosci.03-11-02230.1983.Peer-Reviewed Original ResearchConceptsOnset of afterdischargeProlonged refractory periodBag cell clustersBag cell neuronsCumulative depolarizationRefractory periodNatural refractorinessCell neuronsCalcium entryAction potentialsConcentration of ionophoreExtracellular tetraethylammonium ionsRepetitive intracellular stimulationPeptidergic bag cell neuronsPleuroabdominal connectivesCell clustersCalcium-deficient mediumAdenylate cyclase activatorCalcium-containing mediumMean durationPeptidergic neuronsAbdominal ganglionAfterdischargesBrief trainsIntracellular stimulation