2015
Auditory Pathology in a Transgenic mtTFB1 Mouse Model of Mitochondrial Deafness
McKay SE, Yan W, Nouws J, Thormann MJ, Raimundo N, Khan A, Santos-Sacchi J, Song L, Shadel GS. Auditory Pathology in a Transgenic mtTFB1 Mouse Model of Mitochondrial Deafness. American Journal Of Pathology 2015, 185: 3132-3140. PMID: 26552864, PMCID: PMC5801480, DOI: 10.1016/j.ajpath.2015.08.014.Peer-Reviewed Original ResearchMeSH KeywordsAMP-Activated Protein KinasesAnimalsApoptosisDeafnessDisease Models, AnimalDNA, MitochondrialEvoked Potentials, Auditory, Brain StemHair Cells, Auditory, InnerMice, Inbred C57BLMice, KnockoutMice, TransgenicMitochondrial DiseasesMutationOrgan of CortiReaction TimeSignal TransductionSpiral GanglionStria VascularisTranscription FactorsConceptsAMP kinaseReactive oxygen species-mediated activationTranscription factor E2F1A1555G mutationAuditory pathologyHair cellsTFB1MHearing loss phenotypeRRNA geneAMPK-α1AMPK activityProlonged wave I latencyLoss phenotypeMitochondrial pathologyNonsyndromic deafnessTransgenic mouse strainWave I latencySpiral ganglion neuronsProgressive hearing lossMitochondrial deafnessPotential therapeutic valueDNA causeG mutationOuter hair cellsI latency
2010
Prestin Surface Expression and Activity Are Augmented by Interaction with MAP1S, a Microtubule-associated Protein*
Bai JP, Surguchev A, Ogando Y, Song L, Bian S, Santos-Sacchi J, Navaratnam D. Prestin Surface Expression and Activity Are Augmented by Interaction with MAP1S, a Microtubule-associated Protein*. Journal Of Biological Chemistry 2010, 285: 20834-20843. PMID: 20418376, PMCID: PMC2898336, DOI: 10.1074/jbc.m110.117853.Peer-Reviewed Original Research