1993
Translational Repression by the Bacteriophage T4 Gene 32 Protein Involves Specific Recognition of an RNA Pseudoknot Structure
Shamoo Y, Tam A, Konigsberg W, Williams K. Translational Repression by the Bacteriophage T4 Gene 32 Protein Involves Specific Recognition of an RNA Pseudoknot Structure. Journal Of Molecular Biology 1993, 232: 89-104. PMID: 8331672, DOI: 10.1006/jmbi.1993.1372.Peer-Reviewed Original Research
1991
A retrovirus-like zinc domain is essential for translational repression of bacteriophage T4 gene 32
Shamoo Y, Webster K, Williams K, Konigsberg W. A retrovirus-like zinc domain is essential for translational repression of bacteriophage T4 gene 32. Journal Of Biological Chemistry 1991, 266: 7967-7970. PMID: 2022625, DOI: 10.1016/s0021-9258(18)92923-6.Peer-Reviewed Original ResearchConceptsZinc-binding subdomainsGene 32 mRNALevel of translationCooperative bindingBacteriophage T4 gene 32Zinc-binding motifDNA-binding proteinsGene 32 proteinRibosome binding siteT4 gene 32Stem-loop structureTranslational repressionVariety of retrovirusesGene 32Pseudoknot sequencesPlant virusesZinc domainUnstructured regionsBacteriophage T4Sequence homologyAutoregulatory regionGp32RNA pseudoknotsEssential roleProteinInteractions of the A1 heterogeneous nuclear ribonucleoprotein and its proteolytic derivative, UP1, with RNA and DNA: evidence for multiple RNA binding domains and salt-dependent binding mode transitions.
Nadler S, Merrill B, Roberts W, Keating K, Lisbin M, Barnett S, Wilson S, Williams K. Interactions of the A1 heterogeneous nuclear ribonucleoprotein and its proteolytic derivative, UP1, with RNA and DNA: evidence for multiple RNA binding domains and salt-dependent binding mode transitions. Biochemistry 1991, 30: 2968-76. PMID: 1848781, DOI: 10.1021/bi00225a034.Peer-Reviewed Original ResearchAmino Acid SequenceCircular DichroismDNA HelicasesDNA-Binding ProteinsHeterogeneous Nuclear Ribonucleoprotein A1Heterogeneous-Nuclear Ribonucleoprotein Group A-BHeterogeneous-Nuclear RibonucleoproteinsKineticsMolecular Sequence DataNucleic Acid DenaturationPoly A-UPoly dA-dTPolydeoxyribonucleotidesPolyribonucleotidesRibonucleoproteinsSpectrometry, FluorescenceThermodynamicsThymus HormonesSingle‐stranded DNA binding proteins (SSBs) from prokaryotic transmissible plasmids
Ruvolo P, Keating K, Williams K, Chase J. Single‐stranded DNA binding proteins (SSBs) from prokaryotic transmissible plasmids. Proteins Structure Function And Bioinformatics 1991, 9: 120-134. PMID: 2008432, DOI: 10.1002/prot.340090206.Peer-Reviewed Original ResearchConceptsAmino acid residuesSSB proteinDNA bindingE. coli SSB proteinAcid residuesHelix-destabilizing proteinsEscherichia coli SSBAmino acid sequenceNH2-terminal regionCOOH-terminal regionProteins divergeSequence comparisonProtein sequencesSequence homologyAcid sequenceF plasmidPhe-60Trp-40Trp-54NH2-terminalTerminal thirdDNA binding studiesElongation rateTyr-70Protein[25] Identification of amino acid residues at interface of protein—Nucleic acid complexes by photochemical cross-linking
Williams K, Konigsberg W. [25] Identification of amino acid residues at interface of protein—Nucleic acid complexes by photochemical cross-linking. Methods In Enzymology 1991, 208: 516-539. PMID: 1779846, DOI: 10.1016/0076-6879(91)08027-f.Peer-Reviewed Original ResearchAdenosine TriphosphateAnimalsBinding SitesChromatography, High Pressure LiquidChromatography, Ion ExchangeColiphagesCross-Linking ReagentsDNADNA-Binding ProteinsElectrophoresis, Polyacrylamide GelEscherichia coliHumansKineticsOligodeoxyribonucleotidesPeptide FragmentsPhosphorus RadioisotopesPhotochemistryPolydeoxyribonucleotidesProtein BindingRadioisotope Dilution Technique
1990
Active nucleoprotein filaments of single-stranded binding protein and recA protein on single-stranded DNA have a regular repeating structure
Muniyappa K, Williams K, Chase J, Radding C. Active nucleoprotein filaments of single-stranded binding protein and recA protein on single-stranded DNA have a regular repeating structure. Nucleic Acids Research 1990, 18: 3967-3973. PMID: 2374716, PMCID: PMC331100, DOI: 10.1093/nar/18.13.3967.Peer-Reviewed Original ResearchA novel function for zinc(II) in a nucleic acid-binding protein. Contribution of zinc(II) toward the cooperativity of bacteriophage T4 gene 32 protein binding.
Nadler S, Roberts W, Shamoo Y, Williams K. A novel function for zinc(II) in a nucleic acid-binding protein. Contribution of zinc(II) toward the cooperativity of bacteriophage T4 gene 32 protein binding. Journal Of Biological Chemistry 1990, 265: 10389-10394. PMID: 2113053, DOI: 10.1016/s0021-9258(18)86958-7.Peer-Reviewed Original ResearchPurification and functional characterization of adenovirus ts111A DNA-binding protein. Fluorescence studies of protein-nucleic acid binding.
Meyers M, Keating K, Roberts W, Williams K, Chase J, Horwitz M. Purification and functional characterization of adenovirus ts111A DNA-binding protein. Fluorescence studies of protein-nucleic acid binding. Journal Of Biological Chemistry 1990, 265: 5875-5882. PMID: 2318838, DOI: 10.1016/s0021-9258(19)39444-x.Peer-Reviewed Original Research
1989
Site-specific mutagenesis of T4 gene 32: the role of tyrosine residues in protein-nucleic acid interactions.
Shamoo Y, Ghosaini L, Keating K, Williams K, Sturtevant J, Konigsberg W. Site-specific mutagenesis of T4 gene 32: the role of tyrosine residues in protein-nucleic acid interactions. Biochemistry 1989, 28: 7409-17. PMID: 2684276, DOI: 10.1021/bi00444a039.Peer-Reviewed Original ResearchMeSH KeywordsCalorimetry, Differential ScanningCircular DichroismDNA, Single-StrandedDNA, ViralDNA-Binding ProteinsElectrophoresis, Polyacrylamide GelEscherichia coliGene Expression RegulationGenes, ViralMutationNucleic Acid DenaturationPoly dA-dTPoly TProtein DenaturationTemperatureThermodynamicsT-PhagesTrypsinTyrosineViral ProteinsZinc
1988
Synthesis of the p10 single-stranded nucleic acid binding protein from murine leukemia virus.
Roberts W, Elliott J, McMurray W, Williams K. Synthesis of the p10 single-stranded nucleic acid binding protein from murine leukemia virus. Chemical Biology & Drug Design 1988, 1: 74-80. PMID: 2856555.Peer-Reviewed Original ResearchMeSH KeywordsAmino AcidsCircular DichroismCysteineDNA, Single-StrandedDNA-Binding ProteinsGene Products, gagGenes, gagLeukemia Virus, MurineMass SpectrometryPoly AConceptsBeta strandsAlpha-helixDirect amino acid sequencingSynthetic peptide bindsMurine leukemia virus proteinsAmino acid sequencingLys-C peptidesRetroviral Gag polyproteinFasman analysisGene 32Nucleic acidsP10 proteinCircular dichroism experimentsCys-X2Cysteine positionsBacteriophage T4Endoproteinase Lys-C peptidesPrimary sequenceMurine leukemia virusNative proteinPrimary structureCys-X4Amino acid analysisProteinSimilar sequencesPhotochemical crosslinking of bacteriophage T4 single‐stranded DNA‐binding protein (gp32) to oligo‐p(dT)8: Identification of phenylalanine‐183 as the site of crosslinking
Shamoo Y, Williams K, Konigsberg W. Photochemical crosslinking of bacteriophage T4 single‐stranded DNA‐binding protein (gp32) to oligo‐p(dT)8: Identification of phenylalanine‐183 as the site of crosslinking. Proteins Structure Function And Bioinformatics 1988, 4: 1-6. PMID: 3186689, DOI: 10.1002/prot.340040103.Peer-Reviewed Original ResearchConceptsCovalent bond formationAnion-exchange high-performance liquid chromatographyHigh-performance liquid chromatographyBond formationGas-phase sequencingLiquid chromatographyPhotochemical crosslinkingPhenylthiohydantoin derivativesSer-GlyTryptic peptidesUltraviolet irradiationTyr-AspUltraviolet lightCrosslinkingSer-AsnHigh affinityCleavage productsGln-ValGlu-SerPeptidesPhotolysisTrypsin cleavage productSingle tryptic peptideChromatographyComplexes
1987
The function of zinc in gene 32 protein from T4.
Giedroc D, Keating K, Williams K, Coleman J. The function of zinc in gene 32 protein from T4. Biochemistry 1987, 26: 5251-9. PMID: 3314985, DOI: 10.1021/bi00391a007.Peer-Reviewed Original Research
1986
Cloning of T4 gene 32 and expression of the wild-type protein under lambda promoter PL regulation in Escherichia coli.
Shamoo Y, Adari H, Konigsberg W, Williams K, Chase J. Cloning of T4 gene 32 and expression of the wild-type protein under lambda promoter PL regulation in Escherichia coli. Proceedings Of The National Academy Of Sciences Of The United States Of America 1986, 83: 8844-8848. PMID: 2947239, PMCID: PMC387029, DOI: 10.1073/pnas.83.23.8844.Peer-Reviewed Original ResearchConceptsGene 32T4 gene 32Bacteriophage T4 gene 32T4 DNA replicationWild-type proteinWild-type geneHost cell viabilityTranslational regulationCodon TAGDNA replicationNative promoterPromoter PLAutoregulatory regionRich sequencesRestriction fragmentsEscherichia coliTranscriptsCell viabilityProteinRegulationSynthetic oligodeoxynucleotidesDeleterious effectsCloningMutagenesisG32PGene 32 protein, the single-stranded DNA binding protein from bacteriophage T4, is a zinc metalloprotein.
Giedroc D, Keating K, Williams K, Konigsberg W, Coleman J. Gene 32 protein, the single-stranded DNA binding protein from bacteriophage T4, is a zinc metalloprotein. Proceedings Of The National Academy Of Sciences Of The United States Of America 1986, 83: 8452-8456. PMID: 3490667, PMCID: PMC386948, DOI: 10.1073/pnas.83.22.8452.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceCadmiumCobaltDNA, Single-StrandedDNA-Binding ProteinsMetalloproteinsPoly TT-PhagesTrypsinViral ProteinsZincConceptsGene 32 proteinApo-g32PT4-infected Escherichia coliBacteriophage T4-infected Escherichia coliTyrosine-rich sequenceP-hydroxymercuriphenylsulfonatePlasmid pKC30Sequence CysBacteriophage T4Limited proteolysisConformational elementsEscherichia coliProteinDNAEDTA resultsG32PCysteineFragment ASide chainsPKC30ComplexesProteolysisColiSequenceLinear incorporationPurification and domain structure of core hnRNP proteins A1 and A2 and their relationship to single-stranded DNA-binding proteins.
Kumar A, Williams K, Szer W. Purification and domain structure of core hnRNP proteins A1 and A2 and their relationship to single-stranded DNA-binding proteins. Journal Of Biological Chemistry 1986, 261: 11266-11273. PMID: 3733753, DOI: 10.1016/s0021-9258(18)67378-8.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceChromatography, High Pressure LiquidCircular DichroismDNA-Binding ProteinsHeLa CellsHeterogeneous Nuclear Ribonucleoprotein A1Heterogeneous-Nuclear Ribonucleoprotein Group A-BHeterogeneous-Nuclear RibonucleoproteinsHumansMolecular WeightRibonucleoproteinsSpectrophotometry, UltravioletTrypsinConceptsHeterogeneous nuclear ribonucleoproteinsNucleic acid-binding domainProtein A1Glycine-rich proteinSsDNA-binding proteinDNA-binding proteinsHnRNP protein A1Helix-destabilizing activityHnRNP proteinsNuclear ribonucleoproteinTerminal domainHDP-1A1 bindsGlycine residueNative proteinPrimary structureLimited proteolysisHeLa cellsProtein A2Amino acidsProteinSingle-Stranded DNA Binding Proteins Required for DNA Replication
Chase J, Williams K. Single-Stranded DNA Binding Proteins Required for DNA Replication. Annual Review Of Biochemistry 1986, 55: 103-136. PMID: 3527040, DOI: 10.1146/annurev.bi.55.070186.000535.Peer-Reviewed Original Research1H NMR (500 MHz) identification of aromatic residues of gene 32 protein involved in DNA binding by use of protein containing perdeuterated aromatic residues and by site-directed mutagenesis.
Prigodich R, Shamoo Y, Williams K, Chase J, Konigsberg W, Coleman J. 1H NMR (500 MHz) identification of aromatic residues of gene 32 protein involved in DNA binding by use of protein containing perdeuterated aromatic residues and by site-directed mutagenesis. Biochemistry 1986, 25: 3666-72. PMID: 3013293, DOI: 10.1021/bi00360a029.Peer-Reviewed Original ResearchConceptsGene 32 proteinTyr-115Aromatic residuesPhe residueDNA binding surfaceAmino acid sequenceSite-directed mutationsSite-directed mutagenesisComplex formationAcid sequenceBinding surfaceUse of proteinsTyr residuesNMR difference spectraTyr-73ProteinResiduesPhenylalanyl residuesDNANMR identificationTyrMutagenesisMutationsTyrosylDifference spectraHigh pressure liquid chromatography purification of UP1 and UP2, two related single-stranded nucleic acid-binding proteins from calf thymus.
Merrill B, LoPresti M, Stone K, Williams K. High pressure liquid chromatography purification of UP1 and UP2, two related single-stranded nucleic acid-binding proteins from calf thymus. Journal Of Biological Chemistry 1986, 261: 878-883. PMID: 3941105, DOI: 10.1016/s0021-9258(17)36178-1.Peer-Reviewed Original ResearchProtein chemistry‐nuclear magnetic resonance approach to mapping functional domains in single‐stranded DNA binding proteins
Coleman J, Williams K, King G, Prigodich R, Shamoo Y, Konigsberg W. Protein chemistry‐nuclear magnetic resonance approach to mapping functional domains in single‐stranded DNA binding proteins. Journal Of Cellular Biochemistry 1986, 32: 305-326. PMID: 3543031, DOI: 10.1002/jcb.240320407.Peer-Reviewed Original Research
1985
Amino acid sequence of the UP1 calf thymus helix-destabilizing protein and its homology to an analogous protein from mouse myeloma.
Williams K, Stone K, LoPresti M, Merrill B, Planck S. Amino acid sequence of the UP1 calf thymus helix-destabilizing protein and its homology to an analogous protein from mouse myeloma. Proceedings Of The National Academy Of Sciences Of The United States Of America 1985, 82: 5666-5670. PMID: 2994041, PMCID: PMC390612, DOI: 10.1073/pnas.82.17.5666.Peer-Reviewed Original ResearchConceptsAmino acid sequenceAmino acidsAnalogous proteinsAcid sequenceHelix-destabilizing proteinsComplete amino acid sequenceHelix-destabilizing proteinStaphylococcus aureus V8 proteaseSimilar amino acidsAureus V8 proteaseMouse proteinCyanogen bromide cleavageMouse sequencesProtein sequencesSequence homologyCOOH terminusNH2 terminusSolid-phase sequencingGas-phase sequencingV8 proteaseEndoproteinase LysTryptic peptidesProteinUP1Calf thymus