2020
Mutations disrupting neuritogenesis genes confer risk for cerebral palsy
Jin SC, Lewis SA, Bakhtiari S, Zeng X, Sierant MC, Shetty S, Nordlie SM, Elie A, Corbett MA, Norton BY, van Eyk CL, Haider S, Guida BS, Magee H, Liu J, Pastore S, Vincent JB, Brunstrom-Hernandez J, Papavasileiou A, Fahey MC, Berry JG, Harper K, Zhou C, Zhang J, Li B, Zhao H, Heim J, Webber DL, Frank MSB, Xia L, Xu Y, Zhu D, Zhang B, Sheth AH, Knight JR, Castaldi C, Tikhonova IR, López-Giráldez F, Keren B, Whalen S, Buratti J, Doummar D, Cho M, Retterer K, Millan F, Wang Y, Waugh JL, Rodan L, Cohen JS, Fatemi A, Lin AE, Phillips JP, Feyma T, MacLennan SC, Vaughan S, Crompton KE, Reid SM, Reddihough DS, Shang Q, Gao C, Novak I, Badawi N, Wilson YA, McIntyre SJ, Mane SM, Wang X, Amor DJ, Zarnescu DC, Lu Q, Xing Q, Zhu C, Bilguvar K, Padilla-Lopez S, Lifton RP, Gecz J, MacLennan AH, Kruer MC. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nature Genetics 2020, 52: 1046-1056. PMID: 32989326, PMCID: PMC9148538, DOI: 10.1038/s41588-020-0695-1.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBeta CateninCerebral PalsyCyclin DCytoskeletonDrosophilaExomeExome SequencingExtracellular MatrixF-Box ProteinsFemaleFocal AdhesionsGenetic Predisposition to DiseaseGenome, HumanHumansMaleMutationNeuritesRhoB GTP-Binding ProteinRisk FactorsSequence Analysis, DNASignal TransductionTubulinTumor Suppressor ProteinsConceptsDamaging de novo mutationsCerebral palsyDe novo mutationsCerebral palsy casesRisk genesDamaging de novoNovo mutationsWhole-exome sequencingPalsy casesNeuromotor functionD levelsMonogenic etiologyCyclin D levelsNeuronal connectivityPalsyGene confer riskConfer riskRecessive variantsNeurodevelopmental disorder genesReverse genetic screenDisorder genesParent-offspring triosGenome-wide significanceGenomic factorsCytoskeleton pathway
2018
Clonal evolution analysis of paired anaplastic and well‐differentiated thyroid carcinomas reveals shared common ancestor
Dong W, Nicolson NG, Choi J, Barbieri AL, Kunstman JW, Azar S, Knight J, Bilguvar K, Mane SM, Lifton RP, Korah R, Carling T. Clonal evolution analysis of paired anaplastic and well‐differentiated thyroid carcinomas reveals shared common ancestor. Genes Chromosomes And Cancer 2018, 57: 645-652. PMID: 30136351, DOI: 10.1002/gcc.22678.Peer-Reviewed Original ResearchConceptsCommon ancestorProgression of ATCClonal evolution analysisEvolutionary lineagesGenetic relationshipsAnaplastic thyroid carcinomaClonal analysisAncestorEvolution analysisPrivate mutationsMutationsATC tumorsLineal relationshipLineagesNormal tissuesThyroid carcinomaLandscapeFollicular thyroid carcinomaPairs
2017
De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis
Timberlake AT, Furey CG, Choi J, Nelson-Williams C, Loring E, Galm A, Kahle K, Steinbacher D, Larysz D, Persing J, Lifton R, Bilguvar K, Mane S, Tikhonova I, Castaldi C, Knight J. De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: e7341-e7347. PMID: 28808027, PMCID: PMC5584457, DOI: 10.1073/pnas.1709255114.Peer-Reviewed Original ResearchConceptsBone morphogenetic proteinRas/ERKDe novo mutationsNovo mutationsRas/ERK pathwayDamaging de novo mutationsHigh locus heterogeneityRare syndromic diseaseCommon risk variantsInhibitor of WntSyndromic craniosynostosesNew genesParent-offspring triosSyndromic diseaseMorphogenetic proteinsNegative regulatorERK pathwayMore cranial suturesGenesMidline craniosynostosisRisk variantsWntLocus heterogeneityMutationsExome sequencing
2016
Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles
Timberlake AT, Choi J, Zaidi S, Lu Q, Nelson-Williams C, Brooks ED, Bilguvar K, Tikhonova I, Mane S, Yang JF, Sawh-Martinez R, Persing S, Zellner EG, Loring E, Chuang C, Galm A, Hashim PW, Steinbacher DM, DiLuna ML, Duncan CC, Pelphrey KA, Zhao H, Persing JA, Lifton RP. Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles. ELife 2016, 5: e20125. PMID: 27606499, PMCID: PMC5045293, DOI: 10.7554/elife.20125.Peer-Reviewed Original ResearchMeSH KeywordsAllelesBone Morphogenetic Protein 2CraniosynostosesExomeGenetic Association StudiesHumansInfantMutationPenetranceSequence Analysis, DNASmad6 ProteinConceptsMidline craniosynostosisInhibitor of BMPCommon variantsDamaging de novoGenetic interactionsPhenotypic variationParent-offspring triosEpistatic interactionsGenetic basisOsteoblast differentiationLocus inheritanceAnalysis of linkageDe novoExome sequencingIncomplete penetranceMutationsTransmitted mutations
2015
Clinical, Electrodiagnostic, and Genetic Features of Tangier Disease in an Adolescent Girl with Presentation of Peripheral Neuropathy
Per H, Canpolat M, Bayram A, Ulgen E, Baran B, Kardas F, Gumus H, Kumandas S, Bilguvar K, Çağlayan A. Clinical, Electrodiagnostic, and Genetic Features of Tangier Disease in an Adolescent Girl with Presentation of Peripheral Neuropathy. Neuropediatrics 2015, 46: 420-423. PMID: 26479764, DOI: 10.1055/s-0035-1565275.Peer-Reviewed Original ResearchConceptsPeripheral neuropathyTangier diseaseLipid electrophoresisHigh-density lipoprotein levelsPlasma high-density lipoprotein levelsCassette transporter 1 (ABCA1) geneWhole-exome sequencingLike neuropathyPediatric patientsFemale patientsHDL cholesterolLipoprotein levelsSystemic findingsHDL levelsDifferential diagnosisAsymptomatic sisterNeuropathyPatientsTransporter 1 geneDiagnostic testsExome sequencingAdolescent girlsDiagnosisGenetic featuresGenetic diagnosis
2014
Dominant De Novo Mutations in GJA1 Cause Erythrokeratodermia Variabilis et Progressiva, without Features of Oculodentodigital Dysplasia
Boyden LM, Craiglow BG, Zhou J, Hu R, Loring EC, Morel KD, Lauren CT, Lifton RP, Bilguvar K, , Paller A, Choate K. Dominant De Novo Mutations in GJA1 Cause Erythrokeratodermia Variabilis et Progressiva, without Features of Oculodentodigital Dysplasia. Journal Of Investigative Dermatology 2014, 135: 1540-1547. PMID: 25398053, PMCID: PMC4430428, DOI: 10.1038/jid.2014.485.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceCell MembraneChildChild, PreschoolConnexin 43ConnexinsCraniofacial AbnormalitiesDisease ProgressionErythrokeratodermia VariabilisExomeEye AbnormalitiesFemaleFoot Deformities, CongenitalGolgi ApparatusHeLa CellsHumansImmunohistochemistryMaleMolecular Sequence DataMutagenesis, Site-DirectedMutationPhenotypeSequence Analysis, DNASequence Homology, Amino AcidSkin DiseasesSyndactylyTooth AbnormalitiesConceptsSkin diseasesGJA1 mutationsErythrokeratodermia variabilis et progressivaOculodentodigital dysplasiaProgressive skin diseaseDe novo missense mutationsNovo missense mutationCutaneous findingsDominant de novo mutationsSkin disordersGap junction proteinDe novo mutationsBarrier functionConnexin 43Exome sequencingJunction proteinsPalmoplantar keratodermaDysplasiaGJA1Novo mutationsDiseaseMissense mutationsDifferent mutationsEpidermal homeostasisMembrane localizationExome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative Disorders
Novarino G, Fenstermaker AG, Zaki MS, Hofree M, Silhavy JL, Heiberg AD, Abdellateef M, Rosti B, Scott E, Mansour L, Masri A, Kayserili H, Al-Aama JY, Abdel-Salam GMH, Karminejad A, Kara M, Kara B, Bozorgmehri B, Ben-Omran T, Mojahedi F, Mahmoud I, Bouslam N, Bouhouche A, Benomar A, Hanein S, Raymond L, Forlani S, Mascaro M, Selim L, Shehata N, Al-Allawi N, Bindu PS, Azam M, Gunel M, Caglayan A, Bilguvar K, Tolun A, Issa MY, Schroth J, Spencer EG, Rosti RO, Akizu N, Vaux KK, Johansen A, Koh AA, Megahed H, Durr A, Brice A, Stevanin G, Gabriel SB, Ideker T, Gleeson JG. Exome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative Disorders. Science 2014, 343: 506-511. PMID: 24482476, PMCID: PMC4157572, DOI: 10.1126/science.1247363.Peer-Reviewed Original ResearchConceptsHereditary spastic paraplegiaFurther candidate genesMotor neuron diseaseNeurodegenerative disordersGene discoveryHSP genesGenetic basisCandidate genesNetwork analysisNeuron diseaseCellular transportWhole-exome sequencingNeurodegenerative motor neuron diseaseProgressive age-dependent lossAge-dependent lossGenesMechanistic understandingMotor tract functionCommon neurodegenerative disorderFraction of casesTract functionGenetic diagnosisSpastic paraplegiaGlobal viewDisease
2013
Spondyloepimetaphyseal dysplasia Pakistani type: Expansion of the phenotype
Tüysüz B, Yılmaz S, Gül E, Kolb L, Bilguvar K, Evliyaoğlu O, Günel M. Spondyloepimetaphyseal dysplasia Pakistani type: Expansion of the phenotype. American Journal Of Medical Genetics Part A 2013, 161: 1300-1308. PMID: 23633440, DOI: 10.1002/ajmg.a.35906.Peer-Reviewed Original ResearchMeSH KeywordsAbnormalities, MultipleAdolescentAdultCalcification, PhysiologicCodon, NonsenseConsanguinityDehydroepiandrosteroneDehydroepiandrosterone SulfateDwarfismFemaleGenotypeGrowth DisordersHomozygoteHumansMaleMultienzyme ComplexesMusculoskeletal AbnormalitiesOsteochondrodysplasiasPedigreePhenotypeRadiographySequence Analysis, DNASulfate AdenylyltransferaseTurkeyConceptsDHEA sulfate levelsShort femoral neckShort halluxFemale patientsInsulin resistanceFemoral neckPlasma levelsIliac boneTestosterone levelsTurkish patientsCoxa varaPatientsVertebral bodyMetaphyseal abnormalitiesShort statureSkeletal dysplasiaEpiphyseal ossificationHyperandrogenismDysplasiaDehydroepiandrosteroneSulfate levelsTurkish familyNonsense mutationPAPSS2AndrostenedioneWhole‐exome sequencing identified a patient with TMCO1 defect syndrome and expands the phenotic spectrum
Caglayan A, Per H, Akgumus G, Gumus H, Baranoski J, Canpolat M, Calik M, Yikilmaz A, Bilguvar K, Kumandas S, Gunel M. Whole‐exome sequencing identified a patient with TMCO1 defect syndrome and expands the phenotic spectrum. Clinical Genetics 2013, 84: 394-395. PMID: 23320496, PMCID: PMC4191904, DOI: 10.1111/cge.12088.Peer-Reviewed Original ResearchMeSH KeywordsAbnormalities, MultipleBase SequenceCalcium ChannelsChildConsanguinityExomeHumansMaleMembrane ProteinsPedigreePhenotypeSequence Analysis, DNASyndromeRecessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration
Bilguvar K, Tyagi NK, Ozkara C, Tuysuz B, Bakircioglu M, Choi M, Delil S, Caglayan AO, Baranoski JF, Erturk O, Yalcinkaya C, Karacorlu M, Dincer A, Johnson MH, Mane S, Chandra SS, Louvi A, Boggon TJ, Lifton RP, Horwich AL, Gunel M. Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 3489-3494. PMID: 23359680, PMCID: PMC3587195, DOI: 10.1073/pnas.1222732110.Peer-Reviewed Original ResearchMeSH KeywordsAdultAge of OnsetAmino Acid SequenceBase SequenceChild, PreschoolExomeFemaleGenes, RecessiveHomozygoteHumansHydrolysisMaleModels, MolecularMolecular Sequence DataMutation, MissenseNerve DegenerationNeuronsPedigreeProtein BindingSequence Analysis, DNASubstrate SpecificitySyndromeThermodynamicsUbiquitinUbiquitin ThiolesteraseConceptsUbiquitin C-terminal hydrolase L1Upper motor neuron dysfunctionMotor neuron dysfunctionProgressive neurodegenerative syndromeEarly-onset progressive neurodegenerationChildhood-onset blindnessWhole-exome sequencingNeuron dysfunctionHomozygous missense mutationIndex caseNervous systemProgressive neurodegenerationNeurodegenerative syndromeCerebellar ataxiaHydrolase activityNear complete lossComplete lossAffected individualsConsanguineous unionsMissense mutationsRecessive lossHomozygosity mappingProper positioningReduced affinitySpasticity