2019
MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation
Hu X, Liu ZZ, Chen X, Schulz VP, Kumar A, Hartman AA, Weinstein J, Johnston JF, Rodriguez EC, Eastman AE, Cheng J, Min L, Zhong M, Carroll C, Gallagher PG, Lu J, Schwartz M, King MC, Krause DS, Guo S. MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nature Communications 2019, 10: 1695. PMID: 30979898, PMCID: PMC6461646, DOI: 10.1038/s41467-019-09636-6.Peer-Reviewed Original ResearchConceptsCell fate reprogrammingChromatin accessibilityActin cytoskeletonSomatic cell reprogrammingPluripotency transcription factorsGlobal chromatin accessibilityGenomic accessibilityCytoskeleton (LINC) complexCell reprogrammingCytoskeletal genesTranscription factorsReprogrammingPluripotencyChromatinCytoskeletonMKL1Unappreciated aspectPathwayNuclear volumeNucleoskeletonSUN2CellsActivationGenesExpression
2016
Increased miR-155-5p and reduced miR-148a-3p contribute to the suppression of osteosarcoma cell death
Bhattacharya S, Chalk AM, Ng AJ, Martin TJ, Zannettino AC, Purton LE, Lu J, Baker EK, Walkley CR. Increased miR-155-5p and reduced miR-148a-3p contribute to the suppression of osteosarcoma cell death. Oncogene 2016, 35: 5282-5294. PMID: 27041566, DOI: 10.1038/onc.2016.68.Peer-Reviewed Original ResearchConceptsMiR-148aCell deathCell biological impactMiR-155-5p inhibitionCross-species comparisonsMiR-155-5pApoptosis/necroptosisNormal osteoblastsOS cellsOsteosarcoma cell deathMurine primary osteoblastsMiRNA expression patternsMiRNA-based therapiesCell fateMiR-155-5p overexpressionExpression patternsMolecular geneticsTractable targetsPrimary osteoblastsCandidate targetsBiological impactOsteoblast culturesRIPK1MiRNAsMiRNA
2014
Nonstochastic Reprogramming from a Privileged Somatic Cell State
Guo S, Zi X, Schulz VP, Cheng J, Zhong M, Koochaki SH, Megyola CM, Pan X, Heydari K, Weissman SM, Gallagher PG, Krause DS, Fan R, Lu J. Nonstochastic Reprogramming from a Privileged Somatic Cell State. Cell 2014, 156: 649-662. PMID: 24486105, PMCID: PMC4318260, DOI: 10.1016/j.cell.2014.01.020.Peer-Reviewed Original ResearchConceptsSomatic cell stateCell statesAcquisition of pluripotencyMurine hematopoietic progenitorsEndogenous Oct4Cell cycle accelerationNonstochastic mannerSomatic cellsProgeny cellsPluripotent fateYamanaka factorsCell cycleHematopoietic progenitorsP53 knockdownPluripotencyReprogrammingCycling populationFactor expressionCellsFibroblastsImportant bottleneckKnockdownProgenitorsFateExpression
2012
miR-1 and miR-206 regulate angiogenesis by modulating VegfA expression in zebrafish
Stahlhut C, Suárez Y, Lu J, Mishima Y, Giraldez AJ. miR-1 and miR-206 regulate angiogenesis by modulating VegfA expression in zebrafish. Development 2012, 139: 4356-4365. PMID: 23132244, PMCID: PMC3509730, DOI: 10.1242/dev.083774.Peer-Reviewed Original ResearchConceptsMiR-1/206Post-transcriptional modulatorsMiRNA-target interactionsMiR-1Appropriate physiological responsesRegulation of VEGFAZebrafish developmentEmbryonic developmentTarget protectorNovel functionPrecise regulationGene expressionMorphogenetic activityDevelopmental angiogenesisPutative targetsRegulate angiogenesisEssential processMiR-206Physiological responsesCellular communicationVEGFA expressionGrowth factorVascular endothelial growth factorExpressionAngiogenesis
2010
MicroRNA miR-125a controls hematopoietic stem cell number
Guo S, Lu J, Schlanger R, Zhang H, Wang JY, Fox MC, Purton LE, Fleming HH, Cobb B, Merkenschlager M, Golub TR, Scadden DT. MicroRNA miR-125a controls hematopoietic stem cell number. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 14229-14234. PMID: 20616003, PMCID: PMC2922532, DOI: 10.1073/pnas.0913574107.Peer-Reviewed Original ResearchConceptsHematopoietic stem cellsStem cell pool sizeStem cell stateLong-term hematopoietic stem cellsCell-autonomous mannerStem cellsStem cell populationCell pool sizeMiR-125aStem cell numbersHematopoietic stem cell numbersEnzyme DicerImmature hematopoietic progenitorsHematopoietic differentiationMutant animalsCell statesProgenitor cell apoptosisMicroRNA processing enzyme DicerMicroRNA clusterProapoptotic genesHSPC populationsHematopoietic expansionSpecific microRNAsUnique microRNAsHSPC apoptosisLineage-Specific Transcriptional Regulation of DICER by MITF in Melanocytes
Levy C, Khaled M, Robinson KC, Veguilla RA, Chen PH, Yokoyama S, Makino E, Lu J, Larue L, Beermann F, Chin L, Bosenberg M, Song JS, Fisher DE. Lineage-Specific Transcriptional Regulation of DICER by MITF in Melanocytes. Cell 2010, 141: 994-1005. PMID: 20550935, PMCID: PMC2897150, DOI: 10.1016/j.cell.2010.05.004.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosis Regulatory ProteinsBcl-2-Like Protein 11Cell DifferentiationCell SurvivalCells, CulturedEpidermal CellsGene Expression RegulationGene Knockdown TechniquesHair FollicleHumansMelanocytesMembrane ProteinsMiceMice, Inbred C57BLMicrophthalmia-Associated Transcription FactorMicroRNAsPromoter Regions, GeneticProto-Oncogene ProteinsRibonuclease IIITranscription, GeneticUp-RegulationConceptsTranscriptional start siteLineage-specific transcriptional regulationDicer-dependent processingRegulatory element upstreamMITF bindsTranscriptional regulationMature miRNAsProapoptotic regulatorsMiRNA regulationStart siteMelanocyte survivalCentral regulatorDicerMelanocyte differentiationElement upstreamMiRNA expressionCell typesDicer expressionMiRNAsTranscriptional targetingMITFRegulatorMelanocytesExpressionRegulation
2009
MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer
Olson P, Lu J, Zhang H, Shai A, Chun MG, Wang Y, Libutti SK, Nakakura EK, Golub TR, Hanahan D. MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes & Development 2009, 23: 2152-2165. PMID: 19759263, PMCID: PMC2751988, DOI: 10.1101/gad.1820109.Peer-Reviewed Original ResearchConceptsPrimary tumorMouse modelHallmark capabilitiesPancreatic neuroendocrine tumorsAnti-angiogenic therapyTranscription factor ZEB1MiR changesMiR-200 familyMetastatic tumorsNeuroendocrine tumorsRare subsetEnhanced metastasisAngiogenesis inhibitorsMetastasisTumorsMiR signatureNeoplastic progressionHuman tumorsAltered expressionAdaptive resistanceExpression signaturesE-cadherinCancerMiRTherapymicroRNA Expression during Trophectoderm Specification
Viswanathan SR, Mermel CH, Lu J, Lu CW, Golub TR, Daley GQ. microRNA Expression during Trophectoderm Specification. PLOS ONE 2009, 4: e6143. PMID: 19582159, PMCID: PMC2702083, DOI: 10.1371/journal.pone.0006143.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlastocystCell DifferentiationCell LineageEctodermMiceMicroRNAsPluripotent Stem CellsConceptsEmbryonic stem cellsTrophectoderm specificationPreimplantation developmentMurine embryosFirst cell fate decisionCell fate decisionsTight developmental regulationStem cellsInner cell massCandidate miRNAsNumber of miRNAsStages of embryogenesisRole of microRNAsMiRNA expression changesMammalian developmentTranscription factorsDevelopmental regulationEctopic expressionTarget genesExpression changesTrophectodermal cellsTrophectodermMiRNA expressionFunctional roleMiRNAsRegulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization
Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ, Erfurth FE, Eaton K, Lu J, Grimes HL, Chen J, Rowley JD, Zeleznik-Le NJ. Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 2009, 113: 3314-3322. PMID: 19188669, PMCID: PMC2665896, DOI: 10.1182/blood-2008-04-154310.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCell DifferentiationCell ProliferationCell Transformation, NeoplasticCells, CulturedEmbryonic Stem CellsGene Expression RegulationHistone-Lysine N-MethyltransferaseLeukemiaMiceMice, Inbred C57BLMicroRNAsMolecular Sequence DataMyeloid-Lymphoid Leukemia ProteinRecombinant Fusion ProteinsSequence Homology, Nucleic AcidUp-RegulationConceptsMLL fusion proteinsHox genesMiR-196bLeukemogenic MLL fusion proteinsFusion proteinEmbryonic stem cell differentiationStem cell differentiationDifferentiated hematopoietic cellsShort-term hematopoietic stem cellsMixed lineage leukemia (MLL) geneBone marrow progenitor cellsLeukemia developmentHOXA clusterHematopoietic stem cellsPrimary leukemia samplesChimeric proteinMarrow progenitor cellsHematopoietic lineagesCell differentiationLeukemia geneFusion contributesChromosomal translocationsHematopoietic cellsGenesStem cells
2008
Human multipotent stromal cells from bone marrow and microRNA: Regulation of differentiation and leukemia inhibitory factor expression
Oskowitz AZ, Lu J, Penfornis P, Ylostalo J, McBride J, Flemington EK, Prockop DJ, Pochampally R. Human multipotent stromal cells from bone marrow and microRNA: Regulation of differentiation and leukemia inhibitory factor expression. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 18372-18377. PMID: 19011087, PMCID: PMC2587615, DOI: 10.1073/pnas.0809807105.Peer-Reviewed Original ResearchConceptsHuman multipotent stromal cellsMultipotent stromal cellsAdipogenic differentiationRegulation of differentiationExpression of DicerStromal cellsExpression analysisHMSC differentiationEarly transcriptsFactor expressionMiRNAsLeukemia inhibitory factor expressionOsteogenic differentiationDifferentiationBone marrowExpressionDicerDroshaCellsSilico modelsMicroRNAsMiRNATranscriptsShRNAsEnzymeThe Growth Factor Environment Defines Distinct Pluripotent Ground States in Novel Blastocyst-Derived Stem Cells
Chou YF, Chen HH, Eijpe M, Yabuuchi A, Chenoweth JG, Tesar P, Lu J, McKay RD, Geijsen N. The Growth Factor Environment Defines Distinct Pluripotent Ground States in Novel Blastocyst-Derived Stem Cells. Cell 2008, 135: 449-461. PMID: 18984157, PMCID: PMC2767270, DOI: 10.1016/j.cell.2008.08.035.Peer-Reviewed Original ResearchConceptsStem cell linesGrowth factor environmentPluripotent stateTissue of originCell linesEmbryonic stem cell linesPluripotent ground stateBlastocyst embryosStem cell identityCell-cell interactionsGrowth factor conditionsStem cell typesFactor environmentPostimplantation epiblastCell identityES cellsDevelopmental stagesCell typesStem cellsFunctional differencesCritical roleEmbryosGrowth factorGrowth factor milieuEpiSCsMicroRNA-Mediated Control of Cell Fate in Megakaryocyte-Erythrocyte Progenitors
Lu J, Guo S, Ebert BL, Zhang H, Peng X, Bosco J, Pretz J, Schlanger R, Wang JY, Mak RH, Dombkowski DM, Preffer FI, Scadden DT, Golub TR. MicroRNA-Mediated Control of Cell Fate in Megakaryocyte-Erythrocyte Progenitors. Developmental Cell 2008, 14: 843-853. PMID: 18539114, PMCID: PMC2688789, DOI: 10.1016/j.devcel.2008.03.012.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CD34Bone Marrow CellsCell DifferentiationCell LineageCells, CulturedErythroid CellsErythropoietinGene Expression RegulationGenes, ReporterHematopoietic Stem CellsHumansIntegrin beta3K562 CellsMegakaryocytesMiceMice, Inbred C57BLMicroRNAsModels, BiologicalPlatelet Membrane Glycoprotein IIbProto-Oncogene Proteins c-mybThrombopoietinConceptsMegakaryocyte-erythrocyte progenitorsLineage specificationTranscription factor MYBMiR-150Cell fateLineage fateRegenerative biologyErythroid cellsFunction experimentsMultipotent cellsMegakaryocytic lineageMiRNA expressionPrimary cellsCritical targetModel systemMicroRNAsProgenitorsFateRegulationCellsImportant participantsMYBLineagesMiRNAsBiologyDicer-dependent pathways regulate chondrocyte proliferation and differentiation
Kobayashi T, Lu J, Cobb BS, Rodda SJ, McMahon AP, Schipani E, Merkenschlager M, Kronenberg HM. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 1949-1954. PMID: 18238902, PMCID: PMC2538863, DOI: 10.1073/pnas.0707900105.Peer-Reviewed Original ResearchConceptsDicer-dependent pathwaysSkeletal developmentBiogenesis of miRNAsMiRNA target genesMammalian skeletal developmentSmall noncoding RNAsSkeletal growth defectsChondrocyte proliferationSuppress gene expressionNormal skeletal developmentDiverse organismsCritical roleGrowth defectNoncoding RNAsRNA abundanceGene expressionExpression changesMicroarray analysisBiological processesSignaling systemMiRNAsBase pairingDistinct mechanismsIhh-PTHrPHypertrophic chondrocytes
2002
A selective effect of Mpl ligand on mRNA stabilization during megakaryocyte differentiation
Kaluzhny Y, Hechler B, Lu J, Nguyen HG, Cataldo LM, Ravid K. A selective effect of Mpl ligand on mRNA stabilization during megakaryocyte differentiation. FEBS Letters 2002, 527: 279-283. PMID: 12220674, DOI: 10.1016/s0014-5793(02)03230-1.Peer-Reviewed Original Research3' Flanking Region3' Untranslated RegionsAnimalsCell DifferentiationCells, CulturedGlyceraldehyde-3-Phosphate DehydrogenasesMegakaryocytesMiceNeoplasm ProteinsPlatelet Factor 4Promoter Regions, GeneticProto-Oncogene ProteinsReceptors, CytokineReceptors, Purinergic P2Receptors, Purinergic P2Y1Receptors, ThrombopoietinRNA StabilityRNA, MessengerThrombopoietin
2001
Roads to polyploidy: The megakaryocyte example
Ravid K, Lu J, Zimmet JM, Jones MR. Roads to polyploidy: The megakaryocyte example. Journal Of Cellular Physiology 2001, 190: 7-20. PMID: 11807806, DOI: 10.1002/jcp.10035.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell CycleCell Cycle ProteinsCell DifferentiationGene Expression RegulationHumansMegakaryocytesPolyploidyConceptsCell cycleHigher ploidyHaploid chromosome numberGroup of genesEndomitotic cell cycleChromosome numberMammalian cellsCell physiologyDifferent cell cyclesAnaphase BS phaseMultiple copiesCell typesPlatelet precursorsPolyploidyGenesMegakaryocytesPloidyPolyploidizationCytokinesisInsectsCellsMitosisPlantsPhysiology