2024
Effect of Incomplete Cryoablation and Matrix Metalloproteinase Inhibition on Intratumoral CD8+ T-Cell Infiltration in Murine Hepatocellular Carcinoma.
Shewarega A, Santana J, Nam D, Berz A, Tefera J, Kahl V, Mishra S, Coman D, Duncan J, Roberts S, Wetter A, Madoff D, Chapiro J. Effect of Incomplete Cryoablation and Matrix Metalloproteinase Inhibition on Intratumoral CD8+ T-Cell Infiltration in Murine Hepatocellular Carcinoma. Radiology 2024, 310: e232365. PMID: 38349244, PMCID: PMC10902598, DOI: 10.1148/radiol.232365.Peer-Reviewed Original ResearchConceptsT cell infiltrationCD8<sup>+</sup> T cellsMatrix metalloproteinase inhibitionT cellsHepatocellular carcinomaMatrix metalloproteinase inhibitorsMatrix metalloproteinasesResidual tumorCXCR3<sup>+</sup> CD8<sup>+</sup> T cellsCytotoxic CD8<sup>+</sup> T cell infiltrationIntratumoral CD8+ T cell infiltrationCD8+ T cell infiltrationCD8<sup>+</sup> T cell infiltrationMouse model of hepatocellular carcinomaEarly-stage hepatocellular carcinomaImage-guided tumor ablationUnpaired Student's <i>t</i> testModel of hepatocellular carcinomaFirst-line therapyMurine hepatocellular carcinomaT cell subsetsTumor-associated macrophagesMurine HCC modelLocal immune responseFemale BALB/c mice
2022
MR Imaging–Based In Vivo Macrophage Imaging to Monitor Immune Response after Radiofrequency Ablation of the Liver
Santana J, Petukhova-Greenstein A, Gross M, Hyder F, Pekurovsky V, Gottwald L, Boustani A, Walsh J, Kucukkaya A, Malpani R, Madoff D, Goldberg S, Ahmed M, Joshi N, Coman D, Chapiro J. MR Imaging–Based In Vivo Macrophage Imaging to Monitor Immune Response after Radiofrequency Ablation of the Liver. Journal Of Vascular And Interventional Radiology 2022, 34: 395-403.e5. PMID: 36423815, PMCID: PMC11042914, DOI: 10.1016/j.jvir.2022.11.013.Peer-Reviewed Original ResearchConceptsImmune responseT1-weighted MRPrussian blue stainingRadiofrequency ablationRF ablationC57BL/6 wild-type miceMR imagingDose-escalation studyLocal immune responseMass cytometryWild-type miceRadiological-pathological correlationBlue stainingT1-weighted MR imagingHepatic radiofrequency ablationCD68 antibodyUntreated lobeVivo doseHepatic RF ablationVivo macrophagesMacrophagesMiceMR imaging scannerCoagulation areaCD68
2017
Science to Practice: Molecular-targeted Drug Delivery in Combination with Radiofrequency Ablation of Liver Cancer: A Magic Bullet?
Adam LC, Murali N, Chapiro J, Geschwind JF. Science to Practice: Molecular-targeted Drug Delivery in Combination with Radiofrequency Ablation of Liver Cancer: A Magic Bullet? Radiology 2017, 285: 333-335. PMID: 29045226, PMCID: PMC5673055, DOI: 10.1148/radiol.2017171527.Peer-Reviewed Original ResearchConceptsRadiofrequency ablationRF ablationHepatocellular carcinoma mouse modelTechnical success rateSurvival end pointsChemotherapeutic drug concentrationsCarcinoma mouse modelAnimal tumor modelsTumor-penetrating peptideClinical outcomesTarget lesionsDrug delivery systemsLiver cancerMouse modelTumor modelEnd pointDrug concentrationsDrug deliverySuccess rateTumor treatmentToxic effectsDelivery systemAblationMagic bulletLesions
2016
Science to Practice: Systemic Implications of Ablative Tumor Therapies—Reality Uncovered and Myths Exposed?
Chapiro J, Geschwind JF. Science to Practice: Systemic Implications of Ablative Tumor Therapies—Reality Uncovered and Myths Exposed? Radiology 2016, 280: 329-331. PMID: 27429140, DOI: 10.1148/radiol.2016160505.Peer-Reviewed Original Research
2014
Systemic Delivery of Microencapsulated 3-Bromopyruvate for the Therapy of Pancreatic Cancer
Chapiro J, Sur S, Savic LJ, Ganapathy-Kanniappan S, Reyes J, Duran R, Thiruganasambandam SC, Moats CR, Lin M, Luo W, Tran PT, Herman JM, Semenza GL, Ewald AJ, Vogelstein B, Geschwind JF. Systemic Delivery of Microencapsulated 3-Bromopyruvate for the Therapy of Pancreatic Cancer. Clinical Cancer Research 2014, 20: 6406-6417. PMID: 25326230, PMCID: PMC4300523, DOI: 10.1158/1078-0432.ccr-14-1271.Peer-Reviewed Original ResearchConceptsPancreatic ductal adenocarcinomaSuit-2 cell lineOrthotopic xenograft mouse modelBioluminescence imagingFavorable toxicity profileSublethal drug concentrationsAnti-invasive effectsXenograft mouse modelPDAC cell linesCell linesXenograft tumor modelHalf maximal inhibitory concentrationStrong anticancer effectsPancreatic cancerClinical trialsDuctal adenocarcinomaMouse modelToxicity profileIC50 profileTherapeutic efficacyMatrigel invasionVivo efficacyBLI signalMatrigel assaysMiaPaCa-2
2009
COP9 Signalosome Interacts ATP-dependently with p97/Valosin-containing Protein (VCP) and Controls the Ubiquitination Status of Proteins Bound to p97/VCP*
Cayli S, Klug J, Chapiro J, Fröhlich S, Krasteva G, Orel L, Meinhardt A. COP9 Signalosome Interacts ATP-dependently with p97/Valosin-containing Protein (VCP) and Controls the Ubiquitination Status of Proteins Bound to p97/VCP*. Journal Of Biological Chemistry 2009, 284: 34944-34953. PMID: 19826004, PMCID: PMC2787357, DOI: 10.1074/jbc.m109.037952.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphatasesAdenosine TriphosphateAmino Acid SequenceAnimalsCell Cycle ProteinsCOP9 Signalosome ComplexHumansMiceMolecular Sequence DataMultiprotein ComplexesNIH 3T3 CellsPeptide HydrolasesProtein BindingProtein SubunitsRecombinant Fusion ProteinsUbiquitinationValosin Containing ProteinConceptsP97/valosin-containing proteinValosin-containing proteinUbiquitin/proteasome systemCOP9 signalosomeUbiquitination statusUbiquitinated proteinsProteasome degrades ubiquitinated proteinsATP-dependent mannerProteasome regulatory particleATP-dependent complexesUbiquitin E3 ligasesOligoubiquitin chainsCSN complexE3 ligasesPolyubiquitinated substratesRegulatory particleIsopeptidase activityProteasome systemDeubiquitinase USP15Subunit 5ProteinSignalosomeDegradation pathwayCSN5Key mediator