2023
Green chemistry as just chemistry
Lane M, Rudel H, Wilson J, Erythropel H, Backhaus A, Gilcher E, Ishii M, Jean C, Lin F, Muellers T, Wang T, Torres G, Taylor D, Anastas P, Zimmerman J. Green chemistry as just chemistry. Nature Sustainability 2023, 6: 502-512. DOI: 10.1038/s41893-022-01050-z.Peer-Reviewed Original Research
2022
Applying green chemistry to raw material selection and product formulation at The Estée Lauder Companies
Eckelman M, Moroney M, Zimmerman J, Anastas P, Thompson E, Scott P, McKeever-Alfieri M, Cavanaugh P, Daher G. Applying green chemistry to raw material selection and product formulation at The Estée Lauder Companies. Green Chemistry 2022, 24: 2397-2408. DOI: 10.1039/d1gc03081g.Peer-Reviewed Original ResearchPersonal care productsGreen chemistryCare productsGreen chemistry principlesChemistry principlesChemistryProduct formulationSynthetic ingredientsChemistry performanceHuman healthProduct formulatorsGreenerChemical component dataRaw materialsFormulatorsCosmetic ingredientsProductsIngredientsHazard-based approachRaw material selectionMaterial selectionMaterials
2021
Creating cascading non-linear solutions for the UN sustainable development goals through green chemistry
Anastas P, Zimmerman J. Creating cascading non-linear solutions for the UN sustainable development goals through green chemistry. Chem 2021, 7: 2825-2828. DOI: 10.1016/j.chempr.2021.10.025.Peer-Reviewed Original Research
2018
The United Nations sustainability goals: How can sustainable chemistry contribute?
Anastas P, Zimmerman J. The United Nations sustainability goals: How can sustainable chemistry contribute? Current Opinion In Green And Sustainable Chemistry 2018, 13: 150-153. DOI: 10.1016/j.cogsc.2018.04.017.Peer-Reviewed Original ResearchThe safer chemical design game. Gamification of green chemistry and safer chemical design concepts for high school and undergraduate students
Mellor K, Coish P, Brooks B, Gallagher E, Mills M, Kavanagh T, Simcox N, Lasker G, Botta D, Voutchkova-Kostal A, Kostal J, Mullins M, Nesmith S, Corrales J, Kristofco L, Saari G, Steele W, Melnikov F, Zimmerman J, Anastas P. The safer chemical design game. Gamification of green chemistry and safer chemical design concepts for high school and undergraduate students. Green Chemistry Letters And Reviews 2018, 11: 103-110. DOI: 10.1080/17518253.2018.1434566.Peer-Reviewed Original ResearchThe Green ChemisTREE: 20 years after taking root with the 12 principles
Erythropel H, Zimmerman J, de Winter T, Petitjean L, Melnikov F, Lam C, Lounsbury A, Mellor K, Janković N, Tu Q, Pincus L, Falinski M, Shi W, Coish P, Plata D, Anastas P. The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chemistry 2018, 20: 1929-1961. DOI: 10.1039/c8gc00482j.Peer-Reviewed Original ResearchGreen chemistry
2015
ChemInform Abstract: Designing Nanomaterials to Maximize Performance and Minimize Undesirable Implications Guided by the Principles of Green Chemistry
Gilbertson L, Zimmerman J, Plata D, Hutchison J, Anastas P. ChemInform Abstract: Designing Nanomaterials to Maximize Performance and Minimize Undesirable Implications Guided by the Principles of Green Chemistry. ChemInform 2015, 46: no-no. DOI: 10.1002/chin.201538286.Peer-Reviewed Original ResearchGreen chemistry
2012
Green Chemistry and Chemical Engineering, Introduction
Meyers R, Anastas P, Zimmerman J. Green Chemistry and Chemical Engineering, Introduction. 2012, 1-4. DOI: 10.1007/978-1-4614-5817-3_1.Peer-Reviewed Original ResearchGreen chemistry and green engineering in China: drivers, policies and barriers to innovation
Matus K, Xiao X, Zimmerman J. Green chemistry and green engineering in China: drivers, policies and barriers to innovation. Journal Of Cleaner Production 2012, 32: 193-203. DOI: 10.1016/j.jclepro.2012.03.033.Peer-Reviewed Original ResearchEconomic growthEnergy efficiency policiesHuman capitalEfficiency policiesCleaner production conceptsWorld's largest populationEnvironmental agendaPollution regulationsBureaucratic barriersFinancial barriersSustainable developmentStrict enforcementInnovationPolicyNational attentionSmall baseKey barriersEnvironmental protectionTechnical barriersCircular economyWorkforce trainingGreen chemistryResearch fundingChinaCrucial barrierTowards rational molecular design for reduced chronic aquatic toxicity
Voutchkova-Kostal A, Kostal J, Connors K, Brooks B, Anastas P, Zimmerman J. Towards rational molecular design for reduced chronic aquatic toxicity. Green Chemistry 2012, 14: 1001-1008. DOI: 10.1039/c2gc16385c.Peer-Reviewed Original ResearchChronic aquatic toxicityAquatic toxicityRational molecular designFrontier orbital energiesWater partition coefficientPhysical-chemical propertiesDesign of chemicalGreen chemistryDFT calculationsMolecular designElectrophilic interactionRational designOrbital energiesExperimental toxicity dataPhysicochemical propertiesDiverse aquatic speciesCommercial chemicalsNarcotic toxicityPartition coefficientsPseudokirchneriella subcapitataQikPropChemicalsChronic toxicityToxicological hazardsAquatic speciesGreen Chemistrygreen chemistry and Chemical Engineering, Introduction
Meyers R, Anastas P, Zimmerman J. Green Chemistrygreen chemistry and Chemical Engineering, Introduction. 2012, 4614-4616. DOI: 10.1007/978-1-4419-0851-3_931.Peer-Reviewed Original Research
2011
Green Chemistry and Green Engineering: A Framework for Sustainable Technology Development
Mulvihill M, Beach E, Zimmerman J, Anastas P. Green Chemistry and Green Engineering: A Framework for Sustainable Technology Development. Annual Review Of Environment And Resources 2011, 36: 271-293. DOI: 10.1146/annurev-environ-032009-095500.Peer-Reviewed Original ResearchGreen chemistryGreen chemistry principlesChemistry principlesChemical production processesChemistryGreen engineeringNanotechnologyGreen technologySustainable technology developmentFuture opportunitiesRecent advancesEntire life cycleEnvironmental hazardsProduction processChemicalsTechnology developmentEngineeringTowards rational molecular design: derivation of property guidelines for reduced acute aquatic toxicity
Voutchkova A, Kostal J, Steinfeld J, Emerson J, Brooks B, Anastas P, Zimmerman J. Towards rational molecular design: derivation of property guidelines for reduced acute aquatic toxicity. Green Chemistry 2011, 13: 2373-2379. DOI: 10.1039/c1gc15651a.Peer-Reviewed Original ResearchAcute aquatic toxicityAquatic toxicityOrbital energiesMolecular orbital energiesRational molecular designFrontier orbital energiesOctanol-water partition coefficientLogPo/w valuesDesign of chemicalGreen chemistryDFT calculationsMolecular designUseful chemicalsExperimental toxicity dataPhysicochemical propertiesChemical solubilityMolecular propertiesSafer chemicalsPartition coefficientsToxicity dataLow acute toxicityToxicity concernsCompoundsAcute toxicityQikProp
2008
Toward Green Nano
Eckelman M, Zimmerman J, Anastas P. Toward Green Nano. Journal Of Industrial Ecology 2008, 12: 316-328. DOI: 10.1111/j.1530-9290.2008.00043.x.Peer-Reviewed Original ResearchGreen nanoE-factorSynthesis of nanomaterialsGreener synthesis routesGreen chemistry metricsGold nanoparticlesNanomaterial productionMetal nanoparticlesSpecific nanomaterialsCarbon nanotubesGreen chemistryTraditional synthesisSynthesis routeNanoNanomaterialsPotential applicationsDifferent production methodsNanotechnologyNanoparticlesProduction methodsResearch interestEnvironmental implicationsNew classSynthesisOrders of magnitude
2005
Approaches to Innovations in the Aerospace Sector through Green Engineering and Green Chemistry
Zimmerman J, Anastas P. Approaches to Innovations in the Aerospace Sector through Green Engineering and Green Chemistry. SAE Technical Papers 2005, 1 DOI: 10.4271/2005-01-3305.Peer-Reviewed Original Research