2011
Laminar shear, but not orbital shear, has a synergistic effect with thrombin stimulation on tissue factor expression in human umbilical vein endothelial cells
Rochier A, Nixon A, Yamashita N, Abe R, Abe R, Madri JA, Sumpio BE. Laminar shear, but not orbital shear, has a synergistic effect with thrombin stimulation on tissue factor expression in human umbilical vein endothelial cells. Journal Of Vascular Surgery 2011, 54: 480-488. PMID: 21367569, DOI: 10.1016/j.jvs.2011.01.002.Peer-Reviewed Original ResearchAnalysis of VarianceBlotting, WesternCell Culture TechniquesCells, CulturedEndothelial CellsEnzyme ActivationHumansMechanotransduction, CellularMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3P38 Mitogen-Activated Protein KinasesPhosphorylationProtein Kinase InhibitorsRNA, MessengerStress, MechanicalThrombinThromboplastinTime FactorsUp-Regulation
2005
MAPKs (ERK½, p38) and AKT Can Be Phosphorylated by Shear Stress Independently of Platelet Endothelial Cell Adhesion Molecule-1 (CD31) in Vascular Endothelial Cells*
Sumpio BE, Yun S, Cordova AC, Haga M, Zhang J, Koh Y, Madri JA. MAPKs (ERK½, p38) and AKT Can Be Phosphorylated by Shear Stress Independently of Platelet Endothelial Cell Adhesion Molecule-1 (CD31) in Vascular Endothelial Cells*. Journal Of Biological Chemistry 2005, 280: 11185-11191. PMID: 15668248, DOI: 10.1074/jbc.m414631200.Peer-Reviewed Original ResearchAnimalsCattleCell CommunicationEndothelial CellsEnzyme ActivationHumansMechanoreceptorsMiceMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3P38 Mitogen-Activated Protein KinasesPhosphorylationPlatelet Endothelial Cell Adhesion Molecule-1Protein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktStress, MechanicalTyrosine
2004
Paracrine and Autocrine Functions of Brain-derived Neurotrophic Factor (BDNF) and Nerve Growth Factor (NGF) in Brain-derived Endothelial Cells*
Kim H, Li Q, Hempstead BL, Madri JA. Paracrine and Autocrine Functions of Brain-derived Neurotrophic Factor (BDNF) and Nerve Growth Factor (NGF) in Brain-derived Endothelial Cells*. Journal Of Biological Chemistry 2004, 279: 33538-33546. PMID: 15169782, DOI: 10.1074/jbc.m404115200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBlotting, WesternBrainBrain-Derived Neurotrophic FactorCaspase 3CaspasesCell Line, TransformedCerebral CortexEndothelial CellsEnzyme ActivationEnzyme InhibitorsFlow CytometryGene Expression RegulationHypoxiaImmunohistochemistryImmunosorbent TechniquesMAP Kinase Kinase KinasesMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Mitogen-Activated Protein KinasesNerve Growth FactorPhosphoinositide-3 Kinase InhibitorsPhosphorylationRatsReceptor, Nerve Growth FactorReceptor, trkBReceptors, Nerve Growth FactorRecombinant Fusion ProteinsRecombinant ProteinsTransfectionVascular Endothelial Growth Factor Receptor-2ConceptsBrain-derived neurotrophic factorEndogenous brain-derived neurotrophic factorBrain-derived endothelial cellsNerve growth factorEndothelial cellsNeurotrophic factorAutocrine functionExpression of BDNFCentral nervous system (CNS) endotheliumPro-nerve growth factorGrowth factorExpression of TrkBNormoxic conditionsCentral nervous systemBDNF levelsBDNF expressionBDNF responseTrkB phosphorylationNervous systemTrkBSurvival/apoptosisCell survival/apoptosisRobust angiogenesisAkt pathwayInhibitor of phosphatidylinositol