2014
NEU1 Sialidase Regulates the Sialylation State of CD31 and Disrupts CD31-driven Capillary-like Tube Formation in Human Lung Microvascular Endothelia*
Lee C, Liu A, Miranda-Ribera A, Hyun SW, Lillehoj EP, Cross AS, Passaniti A, Grimm PR, Kim BY, Welling PA, Madri JA, DeLisser HM, Goldblum SE. NEU1 Sialidase Regulates the Sialylation State of CD31 and Disrupts CD31-driven Capillary-like Tube Formation in Human Lung Microvascular Endothelia*. Journal Of Biological Chemistry 2014, 289: 9121-9135. PMID: 24550400, PMCID: PMC3979388, DOI: 10.1074/jbc.m114.555888.Peer-Reviewed Original ResearchConceptsHuman pulmonary microvascular ECsCapillary-like tube formationEC tube formationTube formationCell adhesion molecule-1Pulmonary microvascular ECsHuman Lung Microvascular EndotheliaNeu1 sialidaseLung microvascular endotheliumAdhesion molecule-1Endothelial cell adhesion molecule-1Platelet endothelial cell adhesion molecule-1Endothelial cell expressionMultiplicity of infectionMicrovascular endotheliumMolecule-1Microvascular ECsCell expressionCD31Matrigel substrateSialylation statePeanut agglutinin lectinAdhesion moleculesInhibitory effectAngiogenic phenotype
2006
Modeling the neurovascular niche: VEGF‐ and BDNF‐mediated cross‐talk between neural stem cells and endothelial cells: An in vitro study
Li Q, Ford MC, Lavik EB, Madri JA. Modeling the neurovascular niche: VEGF‐ and BDNF‐mediated cross‐talk between neural stem cells and endothelial cells: An in vitro study. Journal Of Neuroscience Research 2006, 84: 1656-1668. PMID: 17061253, DOI: 10.1002/jnr.21087.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsAnimals, NewbornBrainBrain-Derived Neurotrophic FactorCell CommunicationCell ProliferationCells, CulturedCoculture TechniquesEndothelial CellsEnzyme-Linked Immunosorbent AssayGreen Fluorescent ProteinsMiceMice, Inbred C57BLMice, TransgenicMicroscopy, Electron, TransmissionModels, BiologicalNerve Tissue ProteinsNeuronsNitric OxidePlatelet Endothelial Cell Adhesion Molecule-1Stem CellsVascular Endothelial Growth Factor AConceptsBrain-derived neurotrophic factorBrain-derived endothelial cellsNeural stem cellsNeurovascular nicheTube formationResident neural stem cellsEndothelial cellsCell-derived soluble factorsVascular endothelial growth factorStem cellsNitric oxide scavengerEndothelial growth factorPaucity of dataExogenous NO donorNeurotrophic factorStem cell modulationVascular tube formationCell modulationENOS activationNO donorSoluble factorsGrowth factorNeuronal differentiationReciprocal modulationInduction
2001
Astrocyte-derived VEGF mediates survival and tube stabilization of hypoxic brain microvascular endothelial cells in vitro
Chow J, Ogunshola O, Fan S, Li Y, Ment L, Madri J. Astrocyte-derived VEGF mediates survival and tube stabilization of hypoxic brain microvascular endothelial cells in vitro. Brain Research 2001, 130: 123-132. PMID: 11557101, DOI: 10.1016/s0165-3806(01)00220-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornApoptosisAstrocytesCell CommunicationCell Culture TechniquesCell DivisionCell HypoxiaCell SurvivalCoculture TechniquesCollagenEndothelial Growth FactorsEndothelium, VascularGelsHypoxia, BrainLymphokinesMitogen-Activated Protein KinasesPhosphorylationProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktRatsVascular Endothelial Growth Factor AVascular Endothelial Growth FactorsConceptsBrain microvascular endothelial cellsChronic sublethal hypoxiaVascular endothelial growth factorHypoxic conditionsNewborn rat astrocytesMicrovascular endothelial cellsEndothelial growth factorDose-dependent mannerEffects of hypoxiaVEGF receptor 1Mild hypoxic conditionsImportance of VEGFRBE4 cellsRat astrocytesAmount of VEGFSublethal hypoxiaReceptor 1MAPK tyrosine phosphorylationEndothelial cellsGrowth factorRobust inductionVEGFTube formationTube stabilizationExogenous VEGFpp60c-src Modulates Microvascular Endothelial Phenotype and in Vitro Angiogenesis
Marx M, Warren S, Madri J. pp60c-src Modulates Microvascular Endothelial Phenotype and in Vitro Angiogenesis. Experimental And Molecular Pathology 2001, 70: 201-213. PMID: 11417999, DOI: 10.1006/exmp.2001.2358.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAnimalsBecaplerminCell DivisionEndothelium, VascularGenes, srcGenetic VectorsMaleMicrocirculationMoloney murine leukemia virusNeovascularization, PhysiologicPlatelet-Derived Growth FactorProto-Oncogene Proteins c-sisProto-Oncogene Proteins pp60(c-src)RatsRecombinant ProteinsSignal TransductionTransfectionConceptsC-Src mutantC-SrcTwo-dimensional cultureThree-dimensional cultureWild-type c-SrcC-Src kinase activityC-Src tyrosine kinaseC-Src associatesC-src proteinPlatelet-derived growth factor receptorV-SrcPDGF signalCytoskeletal organizationGrowth factor receptorKinase activityCell shapeTyrosine kinaseVitro AngiogenesisTube-like structuresCell morphologyFactor receptorTube formationMutantsRegulatory effectsOverexpression
1998
Distinct signal transduction pathways are utilized during the tube formation and survival phases of in vitro angiogenesis
Ilan N, Mahooti S, Madri J. Distinct signal transduction pathways are utilized during the tube formation and survival phases of in vitro angiogenesis. Journal Of Cell Science 1998, 111: 3621-3631. PMID: 9819353, DOI: 10.1242/jcs.111.24.3621.Peer-Reviewed Original ResearchMeSH KeywordsApoptosisCalcium-Calmodulin-Dependent Protein KinasesCapillariesCell Culture TechniquesCell LineCell SurvivalCollagenEndothelial Growth FactorsEndothelium, VascularExtracellular MatrixHumansLymphokinesNeovascularization, PhysiologicPhosphatidylinositol 3-KinasesPhosphorylationProtein Kinase CProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktSignal TransductionTetradecanoylphorbol AcetateVascular Endothelial Growth Factor AVascular Endothelial Growth FactorsConceptsHuman umbilical vein endothelial cellsAkt/PKB pathwayTube formationDistinct signal transduction pathwaysAkt/PKBSignal transduction pathwaysDifferent ECM proteinsCollagen gelsExtracellular matrix componentsPeptide growth factorsPKB pathwayProtein kinaseTransduction pathwaysMAP kinaseUmbilical vein endothelial cellsECM proteinsVein endothelial cellsNew blood vesselsPre-existing onesKinaseMajor groupsVivo angiogenesisRapid inductionMatrix componentsSurvival phase
1997
Involvement of endothelial PECAM-1/CD31 in angiogenesis.
DeLisser H, Christofidou-Solomidou M, Strieter R, Burdick M, Robinson C, Wexler R, Kerr J, Garlanda C, Merwin J, Madri J, Albelda S. Involvement of endothelial PECAM-1/CD31 in angiogenesis. American Journal Of Pathology 1997, 151: 671-7. PMID: 9284815, PMCID: PMC1857836.Peer-Reviewed Original ResearchMeSH KeywordsAngiotensin-Converting Enzyme InhibitorsAnimalsAntibodies, MonoclonalCells, CulturedCollagenCorneaDrug CombinationsEndotheliumFibroblast Growth Factor 2HumansLamininMiceMice, Inbred C57BLNeovascularization, PhysiologicPlatelet Endothelial Cell Adhesion Molecule-1ProteoglycansRatsRats, Sprague-DawleyTransforming Growth Factor betaConceptsCell-cell adhesion moleculesEndothelial cell-cell adhesion moleculesBasic fibroblast growth factorRat capillary endothelial cellsPECAM-1Adhesion moleculesHuman PECAM-1Murine PECAM-1Endothelial cellsFibroblast growth factorAdhesion receptorsProcess of angiogenesisPECAM-1/CD31Tube formationAdhesive interactionsVessel growthGrowth factorCapillary endothelial cellsPolyclonal antibodiesRat corneal neovascularizationAngiogenesisCorneal neovascularizationCellsMurine modelMonoclonal antibodiesAn in vitro three-dimensional coculture model of cerebral microvascular angiogenesis and differentiation
Ment L, Stewart W, Scaramuzzino D, Madri J. An in vitro three-dimensional coculture model of cerebral microvascular angiogenesis and differentiation. In Vitro Cellular & Developmental Biology - Animal 1997, 33: 684-691. PMID: 9358284, DOI: 10.1007/s11626-997-0126-y.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAstrocytesBrainCell DifferentiationCoculture TechniquesDogsEndothelium, VascularEnzyme ActivationFibronectinsImmunohistochemistryLamininMicrocirculationMicroscopy, ConfocalMicroscopy, FluorescenceModels, BiologicalNeovascularization, PhysiologicRatsRNA, MessengerUrokinase-Type Plasminogen ActivatorConceptsAstrocyte coculturesThree-dimensional cocultureBrain microvascular endothelial cellsNewborn beagle pupsPostnatal day 1Microvascular endothelial cellsNeonatal rat forebrainCell typesPlasminogen activator activityPreterm birthMicrovascular responsesBeagle pupsThree-dimensional coculture modelDay 1Rat forebrainGlial processesEndothelial proliferationMicrovascular angiogenesisEndothelial cellsCoculture modelPlasminogen zymographyOnly low levelsExtracellular matrix componentsTube formationCocultureNitric oxide synthase inhibitors attenuate transforming-growth-factor-beta 1-stimulated capillary organization in vitro.
Papapetropoulos A, Desai KM, Rudic RD, Mayer B, Zhang R, Ruiz-Torres MP, García-Cardeña G, Madri JA, Sessa WC. Nitric oxide synthase inhibitors attenuate transforming-growth-factor-beta 1-stimulated capillary organization in vitro. American Journal Of Pathology 1997, 150: 1835-44. PMID: 9137106, PMCID: PMC1858220.Peer-Reviewed Original ResearchConceptsNitric oxideL-NAMETube formationNOS isoformsNitric oxide synthase inhibitorL-nitro-arginine methylesterOxide synthase inhibitorNO donor sodium nitroprussideRole of NOTranscriptase-polymerase chain reactionExcess L-arginineDonor sodium nitroprussideSoluble guanylate cyclaseWestern blot analysisEndothelial cell proliferationNOS blockadeCapillary tube formationEndothelial NOSSodium nitroprussideSynthase inhibitorL-arginineMicrovascular ECsAutocrine productionGuanylate cyclaseCapillary organization
1991
Endothelial Cell — Extracellular Matrix Interactions: Modulation of Vascular Cell Phenotype by Matrix Components and Soluble Factors
Madri J. Endothelial Cell — Extracellular Matrix Interactions: Modulation of Vascular Cell Phenotype by Matrix Components and Soluble Factors. Altschul Symposia Series 1991, 127-135. DOI: 10.1007/978-1-4615-3754-0_10.Peer-Reviewed Original ResearchCell typesExtracellular matrixVascular cell populationsComplex extracellular matrixCell populationsVascular cell typesVascular cell phenotypeResident cell typesSheet migrationLarge vessel endothelial cellsDiverse functionsVascular smooth muscle cellsEndothelial cellsLumen formationDifferent cell populationsSoluble factorsMatrix biosynthesisSmooth muscle cellsCell phenotypeVessel endothelial cellsTube formationMatrix componentsMuscle cellsRepair processSite of injury
1989
The Interactions of Vascular Cells with Solid Phase (Matrix) and Soluble Factors
Madri J, Kocher O, Merwin J, Bell L, Yannariello-Brown J. The Interactions of Vascular Cells with Solid Phase (Matrix) and Soluble Factors. Journal Of Cardiovascular Pharmacology 1989, 14: s70-s75. DOI: 10.1097/00005344-198900146-00015.Peer-Reviewed Original ResearchVascular bedSoluble factorsVascular cellsEndothelial cellsVascular smooth muscle cellsCell populationsSite of injuryMicrovascular endothelial cellsSmooth muscle cellsVessel endothelial cellsLarge vessel endothelial cellsVascular cell populationsVascular injuryIntimal thickeningInjury variesPlatelet factorInjuryMuscle cellsSoft tissueTube formationVessel wallHeterogeneous cell populationsCell typesCellsRepair processThe Interactions of Vascular Cells with Solid Phase (Matrix) and Soluble Factors
Madri J, Kocher O, Merwin J, Bell L, Yannariello-Brown J. The Interactions of Vascular Cells with Solid Phase (Matrix) and Soluble Factors. Journal Of Cardiovascular Pharmacology 1989, 14: s70-s75. PMID: 2478828, DOI: 10.1097/00005344-198906146-00015.Peer-Reviewed Original ResearchConceptsVascular bedSoluble factorsVascular cellsEndothelial cellsVascular smooth muscle cellsCell populationsSite of injuryMicrovascular endothelial cellsSmooth muscle cellsVessel endothelial cellsLarge vessel endothelial cellsVascular cell populationsVascular injuryIntimal thickeningInjury variesPlatelet factorInjuryMuscle cellsSoft tissueTube formationVessel wallHeterogeneous cell populationsCell typesCellsRepair process