2006
Modeling the neurovascular niche: VEGF‐ and BDNF‐mediated cross‐talk between neural stem cells and endothelial cells: An in vitro study
Li Q, Ford MC, Lavik EB, Madri JA. Modeling the neurovascular niche: VEGF‐ and BDNF‐mediated cross‐talk between neural stem cells and endothelial cells: An in vitro study. Journal Of Neuroscience Research 2006, 84: 1656-1668. PMID: 17061253, DOI: 10.1002/jnr.21087.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsAnimals, NewbornBrainBrain-Derived Neurotrophic FactorCell CommunicationCell ProliferationCells, CulturedCoculture TechniquesEndothelial CellsEnzyme-Linked Immunosorbent AssayGreen Fluorescent ProteinsMiceMice, Inbred C57BLMice, TransgenicMicroscopy, Electron, TransmissionModels, BiologicalNerve Tissue ProteinsNeuronsNitric OxidePlatelet Endothelial Cell Adhesion Molecule-1Stem CellsVascular Endothelial Growth Factor AConceptsBrain-derived neurotrophic factorBrain-derived endothelial cellsNeural stem cellsNeurovascular nicheTube formationResident neural stem cellsEndothelial cellsCell-derived soluble factorsVascular endothelial growth factorStem cellsNitric oxide scavengerEndothelial growth factorPaucity of dataExogenous NO donorNeurotrophic factorStem cell modulationVascular tube formationCell modulationENOS activationNO donorSoluble factorsGrowth factorNeuronal differentiationReciprocal modulationInduction
1992
Matrix composition, organization and soluble factors: Modulators of microvascular cell differentiation in vitro
Madri J, Marx M. Matrix composition, organization and soluble factors: Modulators of microvascular cell differentiation in vitro. Kidney International 1992, 41: 560-565. PMID: 1573829, DOI: 10.1038/ki.1992.82.Peer-Reviewed Original ResearchConceptsCell typesStructure/functionMajor cell typesExtracellular matrix componentsVascular cell behaviorVascular smooth muscle cellsEndothelial cellsCell differentiationSoluble factorsCell behaviorExtracellular matrixNeighboring cellsMetabolic functionsDirect interactionSmooth muscle cellsMatrix componentsCell populationsMorphological organizationMuscle cellsMicrovascular endothelial cellsCulture modelCellsMesangial cell populationOrgan culture modelCell isolation
1991
Effects of soluble factors and extracellular matrix components on vascular cell behavior in vitro and in vivo: Models of de‐endothelialization and repair
Madri J, Marx M, Merwin J, Basson C, Prinz C, Bell L. Effects of soluble factors and extracellular matrix components on vascular cell behavior in vitro and in vivo: Models of de‐endothelialization and repair. Journal Of Cellular Biochemistry 1991, 45: 123-130. PMID: 1711525, DOI: 10.1002/jcb.240450202.Peer-Reviewed Original ResearchConceptsSoluble factorsEndothelial cellsVascular smooth muscle cellsCell populationsSite of injuryMicrovascular endothelial cellsSmooth muscle cellsVessel endothelial cellsEndothelial vascular cellsLarge vessel endothelial cellsVascular cell populationsCell typesIntimal thickeningDenudation injuryVascular cell typesArterial mediaSubsequent lumen formationDifferent cell populationsInjuryCell responsesMuscle cellsVascular cellsExtracellular matrixSoft tissueVascular cell behaviorEndothelial Cell — Extracellular Matrix Interactions: Modulation of Vascular Cell Phenotype by Matrix Components and Soluble Factors
Madri J. Endothelial Cell — Extracellular Matrix Interactions: Modulation of Vascular Cell Phenotype by Matrix Components and Soluble Factors. Altschul Symposia Series 1991, 127-135. DOI: 10.1007/978-1-4615-3754-0_10.Peer-Reviewed Original ResearchCell typesExtracellular matrixVascular cell populationsComplex extracellular matrixCell populationsVascular cell typesVascular cell phenotypeResident cell typesSheet migrationLarge vessel endothelial cellsDiverse functionsVascular smooth muscle cellsEndothelial cellsLumen formationDifferent cell populationsSoluble factorsMatrix biosynthesisSmooth muscle cellsCell phenotypeVessel endothelial cellsTube formationMatrix componentsMuscle cellsRepair processSite of injury
1989
The Interactions of Vascular Cells with Solid Phase (Matrix) and Soluble Factors
Madri J, Kocher O, Merwin J, Bell L, Yannariello-Brown J. The Interactions of Vascular Cells with Solid Phase (Matrix) and Soluble Factors. Journal Of Cardiovascular Pharmacology 1989, 14: s70-s75. DOI: 10.1097/00005344-198900146-00015.Peer-Reviewed Original ResearchVascular bedSoluble factorsVascular cellsEndothelial cellsVascular smooth muscle cellsCell populationsSite of injuryMicrovascular endothelial cellsSmooth muscle cellsVessel endothelial cellsLarge vessel endothelial cellsVascular cell populationsVascular injuryIntimal thickeningInjury variesPlatelet factorInjuryMuscle cellsSoft tissueTube formationVessel wallHeterogeneous cell populationsCell typesCellsRepair processThe Interactions of Vascular Cells with Solid Phase (Matrix) and Soluble Factors
Madri J, Kocher O, Merwin J, Bell L, Yannariello-Brown J. The Interactions of Vascular Cells with Solid Phase (Matrix) and Soluble Factors. Journal Of Cardiovascular Pharmacology 1989, 14: s70-s75. PMID: 2478828, DOI: 10.1097/00005344-198906146-00015.Peer-Reviewed Original ResearchConceptsVascular bedSoluble factorsVascular cellsEndothelial cellsVascular smooth muscle cellsCell populationsSite of injuryMicrovascular endothelial cellsSmooth muscle cellsVessel endothelial cellsLarge vessel endothelial cellsVascular cell populationsVascular injuryIntimal thickeningInjury variesPlatelet factorInjuryMuscle cellsSoft tissueTube formationVessel wallHeterogeneous cell populationsCell typesCellsRepair process