2023
A ZFYVE21-Rubicon-RNF34 signaling complex promotes endosome-associated inflammasome activity in endothelial cells
Li X, Jiang Q, Song G, Barkestani M, Wang Q, Wang S, Fan M, Fang C, Jiang B, Johnson J, Geirsson A, Tellides G, Pober J, Jane-wit D. A ZFYVE21-Rubicon-RNF34 signaling complex promotes endosome-associated inflammasome activity in endothelial cells. Nature Communications 2023, 14: 3002. PMID: 37225719, PMCID: PMC10209169, DOI: 10.1038/s41467-023-38684-2.Peer-Reviewed Original ResearchConceptsEndothelial cellsInflammasome activityMembrane attack complexCaspase-1Potential therapeutic targetChronic rejectionComplement membrane attack complexTissue inflammationNLRP3 inflammasomeTissue injuryMouse modelTherapeutic targetDependent mannerInflammationAttack complexInflammasomeHuman tissuesFlightless IInhibitory associationsSkin modelRNF34CellsSingle-cell atlas of the human neonatal small intestine affected by necrotizing enterocolitis
Egozi A, Olaloye O, Werner L, Silva T, McCourt B, Pierce R, An X, Wang F, Chen K, Pober J, Shouval D, Itzkovitz S, Konnikova L. Single-cell atlas of the human neonatal small intestine affected by necrotizing enterocolitis. PLOS Biology 2023, 21: e3002124. PMID: 37205711, PMCID: PMC10234541, DOI: 10.1371/journal.pbio.3002124.Peer-Reviewed Original ResearchConceptsSingle-cell RNA sequencingSingle-cell atlasEpithelial cellsCell identityRNA sequencingBulk transcriptomicsCellular dysregulationAberrant interactionsNeonatal small intestinePotential targetCellular changesBiomarker discoveryGastrointestinal complicationsPremature infantsProinflammatory macrophagesProinflammatory genesClonal expansionT cellsEndothelial cellsImmune interactionsIntestinal tissueCellsSmall intestineComprehensive viewNEC
2022
Wanted: An endothelial cell targeting atlas for nanotherapeutic delivery in allograft organs
Liburd ST, Shi AA, Pober JS, Tietjen GT. Wanted: An endothelial cell targeting atlas for nanotherapeutic delivery in allograft organs. American Journal Of Transplantation 2022, 22: 1754-1759. PMID: 35373446, PMCID: PMC9651180, DOI: 10.1111/ajt.17050.Peer-Reviewed Original ResearchConceptsNormothermic machine perfusionEndothelial cellsGraft vasculaturePoor outcomePreservation injuryMachine perfusionProfound shortageOrgan assessmentTransplant therapeuticsDonor comorbiditiesAllograft organClinical useOrgansAttractive targetNanotherapeutic deliveryTherapeutic vehiclesCellsTherapeutic deliveryDeliveryComorbiditiesTransplantGraftInjuryPerfusionVasculatureCoagulation factor V is a T-cell inhibitor expressed by leukocytes in COVID-19
Wang J, Kotagiri P, Lyons PA, Al-Lamki RS, Mescia F, Bergamaschi L, Turner L, Morgan MD, Calero-Nieto FJ, Bach K, Mende N, Wilson NK, Watts ER, Collaboration C, Maxwell PH, Chinnery PF, Kingston N, Papadia S, Stirrups KE, Walker N, Gupta RK, Menon DK, Allinson K, Aitken SJ, Toshner M, Weekes MP, Nathan JA, Walmsley SR, Ouwehand WH, Kasanicki M, Göttgens B, Marioni JC, Smith KGC, Pober JS, Bradley JR. Coagulation factor V is a T-cell inhibitor expressed by leukocytes in COVID-19. IScience 2022, 25: 103971. PMID: 35224470, PMCID: PMC8863325, DOI: 10.1016/j.isci.2022.103971.Peer-Reviewed Original ResearchFactor VSuppress T-cell proliferationCOVID-19 lung diseasePeripheral blood mononuclear cellsCOVID-19Severe COVID-19Blood mononuclear cellsT-cell lymphopeniaT-cell inhibitorsT cell proliferationAdaptive immune systemHospitalized patientsRegulatory cellsLung diseaseMononuclear cellsDisease correlateCoagulation factor VImmune systemLeukocytesNeutrophilsFV expressionFactor VaLymphopeniaCellsPatients
2021
Mitochondrial fission in allograft endothelial cells: A novel actionable target
Mullan CW, Pober JS. Mitochondrial fission in allograft endothelial cells: A novel actionable target. American Journal Of Transplantation 2021, 22: 337-338. PMID: 34865296, DOI: 10.1111/ajt.16911.Commentaries, Editorials and Letters
2020
Ex vivo isolated human vessel perfusion system for the design and assessment of nanomedicines targeted to the endothelium
Lysyy T, Bracaglia LG, Qin L, Albert C, Pober JS, Tellides G, Saltzman WM, Tietjen GT. Ex vivo isolated human vessel perfusion system for the design and assessment of nanomedicines targeted to the endothelium. Bioengineering & Translational Medicine 2020, 5: e10154. PMID: 32440561, PMCID: PMC7237142, DOI: 10.1002/btm2.10154.Peer-Reviewed Original ResearchVessel perfusion systemAnimal modelsPerfusion systemProcess of inflammationVessel segmentsSame human donorEffective clinical translationImmunodeficient miceUmbilical cordRodent modelsHuman donorsEndothelial cellsHuman vesselsBiologic relevanceBiologic replicatesClinical translationSubsequent studiesEfficacyCultured cellsModular chambersCell culturesVivoCellsQuantitative assayVessels
2014
Polarized Granzyme Release Is Required for Antigen-Driven Transendothelial Migration of Human Effector Memory CD4 T Cells
Manes TD, Pober JS. Polarized Granzyme Release Is Required for Antigen-Driven Transendothelial Migration of Human Effector Memory CD4 T Cells. The Journal Of Immunology 2014, 193: 5809-5815. PMID: 25367116, PMCID: PMC4258477, DOI: 10.4049/jimmunol.1401665.Peer-Reviewed Original ResearchConceptsEffector memory CD4 T cellsMemory CD4 T cellsCD4 T cellsT cellsTransendothelial migrationImmune synapse formationEndothelial cell monolayersInflammatory chemokinesMorphologic manifestationsGranzyme releaseSynapse formationTCR recognitionGranule dischargeDynein-driven transportChemokinesCell monolayersEarly eventsEndotheliumCytosolic granulesCellsMTOC reorientationProteolytic activityMicrotubule organizing centerMolecular requirementsGranule function
2013
Paracrine exchanges of molecular signals between alginate-encapsulated pericytes and freely suspended endothelial cells within a 3D protein gel
Andrejecsk JW, Cui J, Chang WG, Devalliere J, Pober JS, Saltzman WM. Paracrine exchanges of molecular signals between alginate-encapsulated pericytes and freely suspended endothelial cells within a 3D protein gel. Biomaterials 2013, 34: 8899-8908. PMID: 23973174, PMCID: PMC3839675, DOI: 10.1016/j.biomaterials.2013.08.008.Peer-Reviewed Original ResearchConceptsHuman umbilical vein endothelial cellsParacrine signalsFunctioning of tissuesProper survivalEndothelial cellsUmbilical vein endothelial cellsMolecular signalsRegulated deliveryVein endothelial cellsVessel-like structuresLiving cellsProtein gelsHepatocyte growth factorTherapeutic proteinsParacrine exchangesGrowth factorMicrovascular pericytesProteinAngiogenic proteinsCellsVascular tissue engineeringHUVEC behaviorTissue constructsPericytesLocal environment
2011
Cellular Delivery for Vascularization of Engineered Tissues: Reduction of Contraction by Mural Cells
Andrejecsk J, Trivellas M, Maier C, Pober J, Saltzman W. Cellular Delivery for Vascularization of Engineered Tissues: Reduction of Contraction by Mural Cells. 2011, 1: 1-2. DOI: 10.1109/nebc.2011.5778700.Peer-Reviewed Original ResearchEndothelial cellsReduction of contractionHuman endothelial cellsImmunodeficient miceHuman pericytesEarly perfusionGel contractionMural cellsVascular structuresVascular stabilityPericytesMicrovesselsTissueVascular networkVascularizationCellsContractionFunctional vascular networkDeliverySimultaneous deliveryTransplantationPerfusionMice
2001
TNF Signaling in Vascular Endothelial Cells
Madge L, Pober J. TNF Signaling in Vascular Endothelial Cells. Experimental And Molecular Pathology 2001, 70: 317-325. PMID: 11418010, DOI: 10.1006/exmp.2001.2368.Peer-Reviewed Original ResearchConceptsTumor necrosis factorEndothelial cellsProinflammatory cytokine tumor necrosis factorCytokines tumor necrosis factorCultured human endothelial cellsVascular endothelial cellsHuman endothelial cellsNecrosis factorVascular endotheliumIntracellular pathwaysMajor targetTNF signalingCell typesCells
2000
Control of Apoptosis during Angiogenesis by Survivin Expression in Endothelial Cells
O'Connor D, Schechner J, Adida C, Mesri M, Rothermel A, Li F, Nath A, Pober J, Altieri D. Control of Apoptosis during Angiogenesis by Survivin Expression in Endothelial Cells. American Journal Of Pathology 2000, 156: 393-398. PMID: 10666367, PMCID: PMC1850029, DOI: 10.1016/s0002-9440(10)64742-6.Peer-Reviewed Original ResearchMeSH KeywordsApoptosisCell DivisionCell SurvivalCells, CulturedEndothelial Growth FactorsEndothelium, VascularFibroblast Growth Factor 2HumansInhibitor of Apoptosis ProteinsLymphokinesMicrotubule-Associated ProteinsMitogensNeoplasm ProteinsNeovascularization, PhysiologicProteinsSurvivinVascular Endothelial Growth Factor AVascular Endothelial Growth FactorsConceptsTumor necrosis factor alpha/cycloheximideControl of apoptosisEndothelial cellsSurvivin expressionQuiescent endothelial cellsEndothelial cell survivalGrowth factorApoptosis inhibitor survivinTwo-dimensional cultureCaspase-3 activityRecombinant expressionFibroblast growth factorBasic fibroblast growth factorCell survivalStrong inductionProtein survivinPathological angiogenesisProtective genesRNA expressionVascular tubesSurvivinExpressionVascular endothelial growth factorApoptosisCellsInterferon-γ elicits arteriosclerosis in the absence of leukocytes
Tellides G, Tereb D, Kirkiles-Smith N, Kim R, Wilson J, Schechner J, Lorber M, Pober J. Interferon-γ elicits arteriosclerosis in the absence of leukocytes. Nature 2000, 403: 207-211. PMID: 10646607, DOI: 10.1038/35003221.Peer-Reviewed Original ResearchMeSH KeywordsAdultAnimalsArteriosclerosisCell DivisionCells, CulturedCoronary VesselsHistocompatibility AntigensHumansImage Processing, Computer-AssistedImmunohistochemistryInterferon-gammaLeukocytesMiceMice, SCIDMuscle, Smooth, VascularPlatelet-Derived Growth FactorReceptor, Platelet-Derived Growth Factor betaSwineTransplantation, HeterologousConceptsVascular smooth muscle cellsGraft arteriosclerosisIntimal expansionAbsence of leukocytesLesions of atherosclerosisSmooth muscle cellsAllogeneic transplantationArteriosclerotic changesAtheroma formationCytokine interferonExogenous IFNAntigen presentationT cellsImmunodeficient miceMononuclear leukocytesMouse modelArterial intimaIFNMuscle cellsArteriosclerosisLeukocytesHuman arteriesAtherosclerosisCellsTransplantation
1999
Human endothelial cells augment early CD40 ligand expression in activated CD4+ T cells through LFA-3-mediated stabilization of mRNA.
Murakami K, Ma W, Fuleihan R, Pober J. Human endothelial cells augment early CD40 ligand expression in activated CD4+ T cells through LFA-3-mediated stabilization of mRNA. The Journal Of Immunology 1999, 163: 2667-73. PMID: 10453007, DOI: 10.4049/jimmunol.163.5.2667.Peer-Reviewed Original ResearchConceptsCD40 ligand expressionT cellsCD40L mRNALFA-3CD40L expressionICAM-1Ligand expressionICAM-1 antisense oligonucleotideT-cell mRNA expressionCD40L protein expressionPretreatment of ECPromoter-reporter geneHuman endothelial cellsIL-2CD4Capacity of ECMRNA expressionICAM-2Endothelial cellsProtein expressionCD40LAntisense oligonucleotidePHAMRNACells
1997
Vascular cells have limited capacities to activate and differentiate T cells: Implications for transplant vascular sclerosis
Pober J, Ma W, Biedermann B, Libby P. Vascular cells have limited capacities to activate and differentiate T cells: Implications for transplant vascular sclerosis. Transplant Immunology 1997, 5: 251-254. PMID: 9504143, DOI: 10.1016/s0966-3274(97)80004-4.Peer-Reviewed Original Research
1995
Disparate localization of 55-kd and 75-kd tumor necrosis factor receptors in human endothelial cells.
Bradley JR, Thiru S, Pober JS. Disparate localization of 55-kd and 75-kd tumor necrosis factor receptors in human endothelial cells. American Journal Of Pathology 1995, 146: 27-32. PMID: 7856733, PMCID: PMC1870772.Peer-Reviewed Original ResearchConceptsTumor necrosis factor receptorNecrosis factor receptorCell surfaceFactor receptorConfocal immunofluorescence microscopyDisparate localizationUndergoes endocytosisCultured human umbilical vein endothelial cellsHuman umbilical vein endothelial cellsEndothelial cellsUmbilical vein endothelial cellsReceptor clusteringGolgi apparatusHuman endothelial cellsCoated vesiclesVein endothelial cellsImmunofluorescence microscopyCellular distributionTNF receptorEndothelial cell activationCell activationReceptorsCytoplasmic vacuolesCellsEndocytosis
1990
Adhesion of Human B Cells to Germinal Centers in Vitro Involves VLA-4 and INCAM-110
Freedman A, Munro J, Rice G, Bevilacqua M, Morimoto C, McIntyre B, Rhynhart K, Pober J, Nadler L. Adhesion of Human B Cells to Germinal Centers in Vitro Involves VLA-4 and INCAM-110. Science 1990, 249: 1030-1033. PMID: 1697696, DOI: 10.1126/science.1697696.Peer-Reviewed Original ResearchCytokine-activated human endothelial cells synthesize and secrete a monocyte chemoattractant, MCP-1/JE.
Rollins BJ, Yoshimura T, Leonard EJ, Pober JS. Cytokine-activated human endothelial cells synthesize and secrete a monocyte chemoattractant, MCP-1/JE. American Journal Of Pathology 1990, 136: 1229-33. PMID: 2113354, PMCID: PMC1877579.Peer-Reviewed Original ResearchConceptsMCP-1/JEIL-1 betaEndothelial cellsMonocyte chemoattractantMonocyte chemoattractant MCP-1Tumor necrosis factorChemoattractant MCP-1Accumulation of monocytesSites of inflammationMonocyte chemoattractant activityHours of treatmentHuman endothelial cellsInflammatory mediatorsMCP-1Necrosis factorIFN-gammaChemoattractant activityJE proteinChemoattractantCellsBetaHoursInducible expressionMRNALesser extentMolecular Studies of von Willebrand Disease: Reduced von Willebrand Factor Biosynthesis, Storage, and Release in Endothelial Cells Derived From Patients With Type I von Willebrand Disease
Ewenstein B, Inbal A, Pober J, Handin R. Molecular Studies of von Willebrand Disease: Reduced von Willebrand Factor Biosynthesis, Storage, and Release in Endothelial Cells Derived From Patients With Type I von Willebrand Disease. Blood 1990, 75: 1466-1472. DOI: 10.1182/blood.v75.7.1466.1466.Peer-Reviewed Original ResearchMessenger RNALess messenger RNAVon Willebrand factorEndothelial cellsCultured umbilical vein endothelial cellsRegulated secretionForms of vWDUmbilical vein endothelial cellsStorage organellesFactor biosynthesisVein endothelial cellsMRNA transcriptionVWF proteinMolecular defectsMolecular studiesVWF alleleVon Willebrand diseaseSubsequent translationProteinStorage poolCellsWillebrand diseaseType I von Willebrand diseaseWillebrand factorTranscription
1987
Identification of an inducible endothelial-leukocyte adhesion molecule.
Bevilacqua MP, Pober JS, Mendrick DL, Cotran RS, Gimbrone MA. Identification of an inducible endothelial-leukocyte adhesion molecule. Proceedings Of The National Academy Of Sciences Of The United States Of America 1987, 84: 9238-9242. PMID: 2827173, PMCID: PMC299728, DOI: 10.1073/pnas.84.24.9238.Peer-Reviewed Original ResearchConceptsHuman endothelial cellsCell surface proteinsEndothelial cell surface proteinsUnstimulated human endothelial cellsCell surface structuresHL-60 cellsSame polypeptideHL-60 adhesionCultured human endothelial cellsAdhesion assaysAdhesive interactionsH18/7Adhesion moleculesCytokine-stimulated human endothelial cellsDependent fashionCell surface antigensEndothelial cellsEndothelial leukocyte adhesion moleculeEndothelial leukocyte adhesion molecule-1AdhesionCellsAdhesion molecule-1Monoclonal antibodiesSites of inflammationLesser extentInduction and Regulation of Endothelial Gene Expression
Collins T, Pober J. Induction and Regulation of Endothelial Gene Expression. Sitzungsberichte Der Heidelberger Akademie Der Wissenschaften 1987, 155-158. DOI: 10.1007/978-3-642-83118-8_49.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsEndothelial cellsEndothelial gene expressionUnderlying smooth muscle cellsGene expressionSmooth muscle cellsInflammatory mediatorsPathologic lesionsSurface phenotypeVascular intimaPathophysiological processesEndothelial liningEC gene expressionMuscle cellsBlood streamArterial wallBlood cellsVessel wall pathophysiologySecretory productsVessel wallCell surface componentsCellular componentsCellular interactionsCritical determinantCellsExpression