2024
Tumor Necrosis Factor Receptor-2 Signals Clear-Cell Renal Carcinoma Proliferation via Phosphorylated 4E Binding Protein-1 and Mitochondrial Gene Translation
Al-Lamki R, Tolkovsky A, Alawwami M, Lu W, Field S, Wang J, Pober J, Bradley J. Tumor Necrosis Factor Receptor-2 Signals Clear-Cell Renal Carcinoma Proliferation via Phosphorylated 4E Binding Protein-1 and Mitochondrial Gene Translation. American Journal Of Pathology 2024, 194: 1374-1387. PMID: 38537932, DOI: 10.1016/j.ajpath.2024.02.019.Peer-Reviewed Original ResearchClear cell renal cell carcinomaCell cycle entryTumor necrosis factorSignaling pathwayTumor cellsTNFR2 signaling pathwayCell surface receptorsIncreased cell deathSecrete tumor necrosis factorCell cycle activitySerine 65Cell renal cell carcinomaPhosphorylation of 4EBP1Renal cell carcinomaInhibition of mTORGene translationSelective ligationMitochondrial functionCell deathDownstream targetsPharmacological inhibition of mTORClear cell renal cell carcinoma tissuesSurface receptorsPI3KEpithelial malignancies
2021
Differential inflammatory responses of the native left and right ventricle associated with donor heart preservation
Lei I, Huang W, Ward PA, Pober JS, Tellides G, Ailawadi G, Pagani FD, Landstrom AP, Wang Z, Mortensen RM, Cascalho M, Platt J, Chen Y, Lam HYK, Tang PC. Differential inflammatory responses of the native left and right ventricle associated with donor heart preservation. Physiological Reports 2021, 9: e15004. PMID: 34435466, PMCID: PMC8387788, DOI: 10.14814/phy2.15004.Peer-Reviewed Original ResearchConceptsRight ventricleCold ischemiaIL-10Inflammatory responseIL-6 protein levelsCold ischemic preservationEx vivo ischemiaLeft ventricle dysfunctionCold ischemic timeDonor heart preservationInflammatory cytokine expressionCell deathDifferential inflammatory responseTumor necrosis factorComparable inflammatory responsesHuman donor heartsCaspase-3 expressionIschemic preservationVentricle dysfunctionInflammasome expressionIschemic timeRNA sequencingContractile dysfunctionDonor heartsWarm perfusion
2020
Tumor necrosis factor receptor‐2 signaling pathways promote survival of cancer stem‐like CD133+ cells in clear cell renal carcinoma
Bradley JR, Wang J, Pacey S, Warren AY, Pober JS, Al‐Lamki R. Tumor necrosis factor receptor‐2 signaling pathways promote survival of cancer stem‐like CD133+ cells in clear cell renal carcinoma. FASEB BioAdvances 2020, 2: 126-144. PMID: 32123862, PMCID: PMC7003657, DOI: 10.1096/fba.2019-00071.Peer-Reviewed Original ResearchCancer stem-like cellsClear cell renal cell carcinomaCell survivalPromotes cell survivalCytochrome c releaseCell cycle entryMitochondrial morphological changesPI-3KTumor necrosis factor receptor 2Kinase cascadePhosphorylation of VEGFR2Stem-like cellsC releaseReactive oxygen speciesZ-VADCycle entrySignal transducerTranscription 3Cell cycleNecrostatin-1Cell deathClear cell renal carcinomaSiRNA knockdownMixed lineageCell renal cell carcinoma
2009
Generation of NO by Bystander Human CD8 T Cells Augments Allogeneic Responses by Inhibiting Cytokine Deprivation-Induced Cell Death
Choy JC, Pober JS. Generation of NO by Bystander Human CD8 T Cells Augments Allogeneic Responses by Inhibiting Cytokine Deprivation-Induced Cell Death. American Journal Of Transplantation 2009, 9: 2281-2291. PMID: 19663890, PMCID: PMC3505447, DOI: 10.1111/j.1600-6143.2009.02771.x.Peer-Reviewed Original ResearchConceptsHuman CD8 T cellsCD8 T cellsInducible NO synthaseT cellsActivated T cellsNitric oxideDeprivation-induced cell deathCell deathAllogeneic endothelial cellsT cell proliferationActivation-induced cell deathCytokine deprivationGeneration of NOT cell deathExogenous nitric oxideHuman T cellsNO augmentsAllogeneic responseS-nitrosylationNO synthaseProtective effectActivity of caspasesEndothelial cellsPharmacological inhibitorsDeathParacrine Generation of NO by Bystander Human CD8 T Cells Augments Allogeneic Responses by Inhibiting Cytokine Deprivation-Induced Cell Death (141.3)
Choy J, Pober J. Paracrine Generation of NO by Bystander Human CD8 T Cells Augments Allogeneic Responses by Inhibiting Cytokine Deprivation-Induced Cell Death (141.3). The Journal Of Immunology 2009, 182: 141.3-141.3. DOI: 10.4049/jimmunol.182.supp.141.3.Peer-Reviewed Original ResearchHuman CD8 T cellsCD8 T cellsT cellsActivated T cellsDeprivation-induced cell deathCell deathAllogeneic endothelial cellsT cell proliferationActivation-induced cell deathCytokine deprivationHuman T cellsProtein expression levelsNO augmentsAllogeneic responseS-nitrosylationProtective effectExogenous NOActivity of caspasesEndothelial cellsPharmacological inhibitorsDeathBcl-2Cell proliferationExpression levelsINOS
2001
Tumor necrosis factor receptor-associated factors (TRAFs)
Bradley J, Pober J. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene 2001, 20: 6482-6491. PMID: 11607847, DOI: 10.1038/sj.onc.1204788.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsAmino Acid MotifsAnimalsHumansInterleukin-1Protein BindingProtein Structure, TertiaryProteinsReceptors, Tumor Necrosis FactorSignal TransductionTNF Receptor-Associated Factor 1TNF Receptor-Associated Factor 2TNF Receptor-Associated Factor 3TNF Receptor-Associated Factor 4TNF Receptor-Associated Factor 5TNF Receptor-Associated Factor 6Transcription Factor AP-1Tumor Necrosis Factor Receptor-Associated Peptides and ProteinsConceptsTRAF proteinsNecrosis factor receptor-associated factorReceptor-associated factorZinc finger motifsToll/interleukinTumor necrosis factor receptor familyTRAFs 2Finger motifTRAF domainAdaptor proteinCytoplasmic domainFactor receptor familyHomology regionTRAF familyRegulated fashionDownstream eventsSignal transducerCellular responsesCell deathImportant regulatorReceptor familyProteinPathological processesNF-κBDiseased tissues
1999
Apoptosis-inducing Agents Cause Rapid Shedding of Tumor Necrosis Factor Receptor 1 (TNFR1) A NONPHARMACOLOGICAL EXPLANATION FOR INHIBITION OF TNF-MEDIATED ACTIVATION*
Madge L, Sierra-Honigmann M, Pober J. Apoptosis-inducing Agents Cause Rapid Shedding of Tumor Necrosis Factor Receptor 1 (TNFR1) A NONPHARMACOLOGICAL EXPLANATION FOR INHIBITION OF TNF-MEDIATED ACTIVATION*. Journal Of Biological Chemistry 1999, 274: 13643-13649. PMID: 10224136, DOI: 10.1074/jbc.274.19.13643.Peer-Reviewed Original ResearchMeSH KeywordsApoptosisCalcium-Calmodulin-Dependent Protein KinasesCaspasesCells, CulturedDNA-Binding ProteinsEndothelium, VascularEnzyme ActivationEnzyme InhibitorsHumansI-kappa B ProteinsInterleukin-1Mitogen-Activated Protein KinasesNF-KappaB Inhibitor alphaP38 Mitogen-Activated Protein KinasesProteinsReceptors, Tumor Necrosis FactorSignal TransductionTNF Receptor-Associated Factor 1Tumor Necrosis Factor-alphaConceptsTumor necrosis factor receptor 1Apoptogenic drugsIkappaBalpha degradationTNF-dependent recruitmentBroad spectrum caspase inhibitor zVADfmkInitiation of apoptosisCaspase inhibitor zVADfmkApoptotic cell deathApoptosis-inducing agentsEndothelial cellsTumour necrosis factor signalFactor signalsP38 kinaseTNF signalingEvidence of apoptosisCell deathFactor receptor 1Necrosis factor receptor 1Inhibition of TNFArachidonyl trifluoromethylketoneVascular endothelial cellsApoptosisTRADDEC apoptosisPutative inhibitors
1996
Ceramide Is Not a Signal for Tumor Necrosis Factor–Induced Gene Expression but Does Cause Programmed Cell Death in Human Vascular Endothelial Cells
Slowik M, De Luca L, Min W, Pober J. Ceramide Is Not a Signal for Tumor Necrosis Factor–Induced Gene Expression but Does Cause Programmed Cell Death in Human Vascular Endothelial Cells. Circulation Research 1996, 79: 736-747. PMID: 8831497, DOI: 10.1161/01.res.79.4.736.Peer-Reviewed Original ResearchConceptsConcentrations of TNFNF-kappa BEndothelial cellsJun N-terminal kinaseNecrosis factorEndothelial leukocyte adhesion molecule-1Leukocyte adhesion molecule-1Treatment of ECCell deathCultured human umbilical vein endothelial cellsEndothelial leukocyte adhesion moleculeTumor necrosis factorAdhesion molecule-1Leukocyte adhesion moleculesHuman vascular endothelial cellsHuman umbilical vein endothelial cellsStimulation of ECUmbilical vein endothelial cellsVascular endothelial cellsP50/p65 heterodimeric formVein endothelial cellsPotential intracellular mediators