2001
Spectrin Oligomerization is Cooperatively Coupled to Membrane Assembly: A Linkage Targeted by Many Hereditary Hemolytic Anemias?
Giorgi M, Cianci C, Gallagher P, Morrow J. Spectrin Oligomerization is Cooperatively Coupled to Membrane Assembly: A Linkage Targeted by Many Hereditary Hemolytic Anemias? Experimental And Molecular Pathology 2001, 70: 215-230. PMID: 11418000, DOI: 10.1006/exmp.2001.2377.Peer-Reviewed Original Research
1994
A partial structural repeat forms the heterodimer self-association site of all beta-spectrins
Kennedy S, Weed S, Forget B, Morrow J. A partial structural repeat forms the heterodimer self-association site of all beta-spectrins. Journal Of Biological Chemistry 1994, 269: 11400-11408. PMID: 8157672, DOI: 10.1016/s0021-9258(19)78138-1.Peer-Reviewed Original ResearchAmino Acid SequenceBase SequenceBinding SitesCloning, MolecularDNA PrimersErythrocytesEscherichia coliGlutathione TransferaseHumansKineticsMacromolecular SubstancesModels, StructuralMolecular Sequence DataProtein Structure, SecondaryRecombinant Fusion ProteinsRecombinant ProteinsRepetitive Sequences, Nucleic AcidSpectrin
1993
The 270 kDa splice variant of erythrocyte beta-spectrin (beta I sigma 2) segregates in vivo and in vitro to specific domains of cerebellar neurons.
Malchiodi-Albedi F, Ceccarini M, Winkelmann J, Morrow J, Petrucci T. The 270 kDa splice variant of erythrocyte beta-spectrin (beta I sigma 2) segregates in vivo and in vitro to specific domains of cerebellar neurons. Journal Of Cell Science 1993, 106 ( Pt 1): 67-78. PMID: 8270644, DOI: 10.1242/jcs.106.1.67.Peer-Reviewed Original ResearchConceptsBeta IPostsynaptic densityMultiple alternative transcriptsBeta-spectrin isoformBeta-spectrin genePlasma membrane stainingAlpha beta heterodimersNon-erythroid alpha-spectrinRegion of alphaCerebellar granule cellsDistinct genesPrecise segregationSubstantial homologyBiochemical restrictionsSingle protein bandAlternative transcriptsDistinct cytoplasmicUnique sequencesCerebellar neuronsSpectrin isoformsBeta heterodimerAlpha-spectrinSpectrin complexSplice variantsTargeting mechanismCalmodulin-binding domain of recombinant erythrocyte beta-adducin.
Scaramuzzino D, Morrow J. Calmodulin-binding domain of recombinant erythrocyte beta-adducin. Proceedings Of The National Academy Of Sciences Of The United States Of America 1993, 90: 3398-3402. PMID: 8475088, PMCID: PMC46307, DOI: 10.1073/pnas.90.8.3398.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceBinding SitesBlood ProteinsCalmodulinCalmodulin-Binding ProteinsCalpainCattleCloning, MolecularDNAErythrocytesKineticsMacromolecular SubstancesMolecular Sequence DataOligodeoxyribonucleotidesPhosphorylationProtein Structure, SecondaryRecombinant ProteinsRestriction MappingTrypsinConceptsCaM-binding activityBeta-adducinBundles F-actinProtease-sensitive domainsCAMP-dependent kinaseCaM-binding domainPartial cDNA cloneBinding of spectrinAmino acid codeDependent CaM bindingProtein kinase CSingle letter amino acid codeCaM-binding sequenceProtease-resistant corePEST sequenceCovalent phosphorylationShares structural featuresCDNA clonesCortical cytoskeletonHeterodimeric proteinStructural basisConsensus sequenceMammalian erythrocytesProtease sensitivityBind calmodulin
1989
Contributions of the β‐subunit to spectrin structure and function
Coleman T, Fishkind D, Mooseker M, Morrow J. Contributions of the β‐subunit to spectrin structure and function. Cytoskeleton 1989, 12: 248-263. PMID: 2524283, DOI: 10.1002/cm.970120406.Peer-Reviewed Original Research
1988
Proteolytic processing of human brain alpha spectrin (fodrin): identification of a hypersensitive site
Harris A, Morrow J. Proteolytic processing of human brain alpha spectrin (fodrin): identification of a hypersensitive site. Journal Of Neuroscience 1988, 8: 2640-2651. PMID: 3074159, PMCID: PMC6569499, DOI: 10.1523/jneurosci.08-07-02640.1988.Peer-Reviewed Original ResearchConceptsLong-term potentiationBrain spectrinCalcium-dependent mechanismCalcium-dependent neutral proteaseCalcium-dependent proteaseCentral molecular mechanismsSite of actionReceptor functionPostsynaptic membraneCalcium-dependent mannerFurther investigationMolecular mechanismsGel overlay techniqueAlpha subunitNeutral proteaseNonerythroid spectrinImportant moleculesProteolytic processingCleavage fragmentsPotentiationProtease
1986
Mechanisms of cytoskeletal regulation: Functional and antigenic diversity in human erythrocyte and brain beta spectrin
Harris A, Anderson J, Yurchenco P, Green L, Ainger K, Morrow J. Mechanisms of cytoskeletal regulation: Functional and antigenic diversity in human erythrocyte and brain beta spectrin. Journal Of Cellular Biochemistry 1986, 30: 51-69. PMID: 2420811, DOI: 10.1002/jcb.240300107.Peer-Reviewed Original Research
1985
Mechanism of cytoskeletal regulation (I): functional differences correlate with antigenic dissimilarity in human brain and erythrocyte spectrin
Harris A, Green L, Ainger K, Morrow J. Mechanism of cytoskeletal regulation (I): functional differences correlate with antigenic dissimilarity in human brain and erythrocyte spectrin. Biochimica Et Biophysica Acta 1985, 830: 147-158. PMID: 2410030, DOI: 10.1016/0167-4838(85)90022-6.Peer-Reviewed Original Research
1983
Molecular and functional changes in spectrin from patients with hereditary pyropoikilocytosis.
Knowles W, Morrow J, Speicher D, Zarkowsky H, Mohandas N, Mentzer W, Shohet S, Marchesi V. Molecular and functional changes in spectrin from patients with hereditary pyropoikilocytosis. Journal Of Clinical Investigation 1983, 71: 1867-1877. PMID: 6863544, PMCID: PMC370392, DOI: 10.1172/jci110942.Peer-Reviewed Original Research
1982
A structural model of human erythrocyte spectrin. Alignment of chemical and functional domains.
Speicher D, Morrow J, Knowles W, Marchesi V. A structural model of human erythrocyte spectrin. Alignment of chemical and functional domains. Journal Of Biological Chemistry 1982, 257: 9093-9101. PMID: 7096353, DOI: 10.1016/s0021-9258(18)34247-9.Peer-Reviewed Original ResearchConceptsNumerous small peptidesPeptide mapping techniquesChemical domainsPeptide segmentsMolecular weightChemical cleavageSized peptidesTwo-dimensional peptide mapping techniquesSmall peptidesIntact moleculeUnique peptidesPhosphorylated amino acidsFurther proteolytic cleavageOverlap peptidesPolypeptide segmentsIntermediate-sized peptidesMoleculesMild trypsin digestionTrypsin digestionTwo-dimensional peptide mapsPeptidesStructural modelSpectrin subunitsCleavagePeptide mapsThe Polymeric State of Actin in the Human Erythrocyte Cytoskeleton
Atkinson M, Morrow J, Marchesi V. The Polymeric State of Actin in the Human Erythrocyte Cytoskeleton. Journal Of Cellular Biochemistry 1982, 18: 493-505. PMID: 7200988, DOI: 10.1002/jcb.1982.240180410.Peer-Reviewed Original Research
1981
Self-assembly of spectrin oligomers in vitro: a basis for a dynamic cytoskeleton.
Morrow J, Marchesi V. Self-assembly of spectrin oligomers in vitro: a basis for a dynamic cytoskeleton. Journal Of Cell Biology 1981, 88: 463-468. PMID: 7204503, PMCID: PMC2111738, DOI: 10.1083/jcb.88.2.463.Peer-Reviewed Original ResearchSpectrin oligomers: A structural feature of the erythrocyte cytoskeleton
Morrow J, Haigh W, Marchesi V. Spectrin oligomers: A structural feature of the erythrocyte cytoskeleton. Journal Of Cellular Biochemistry 1981, 17: 275-287. PMID: 7328675, DOI: 10.1002/jsscb.380170308.Peer-Reviewed Original ResearchConceptsMembrane skeletonRed cell membrane skeletonCell membrane skeletonProtein-protein associationSpectrin associationsHigh molecular weight oligomersErythrocyte cytoskeletonNumerous membranePhysiological conditionsTriton XMolecular weight oligomersStructural featuresCytoskeletonWeight oligomersSpectrinTropomyosinMembraneAssembly
1980
Identification of functional domains of human erythrocyte spectrin.
Morrow J, Speicher D, Knowles W, Hsu C, Marchesi V. Identification of functional domains of human erythrocyte spectrin. Proceedings Of The National Academy Of Sciences Of The United States Of America 1980, 77: 6592-6596. PMID: 6935670, PMCID: PMC350332, DOI: 10.1073/pnas.77.11.6592.Peer-Reviewed Original ResearchConceptsHuman erythrocyte spectrinErythrocyte membrane vesiclesMembrane vesiclesBinding of spectrinErythrocyte spectrinHigh-affinity membraneCleavage of spectrinFunctional domainsCytoplasmic surfaceDimeric spectrinProtein receptorsPolypeptide chainTerminal regionSpectrinTemperature-dependent associationUnique polypeptide chainsNoncovalent associationTerminal portionAlpha chainBeta chainIdentification of proteolytically resistant domains of human erythrocyte spectrin.
Speicher D, Morrow J, Knowles W, Marchesi V. Identification of proteolytically resistant domains of human erythrocyte spectrin. Proceedings Of The National Academy Of Sciences Of The United States Of America 1980, 77: 5673-5677. PMID: 7003593, PMCID: PMC350131, DOI: 10.1073/pnas.77.10.5673.Peer-Reviewed Original Research
1973
Interaction of 13CO2 and Bicarbonate with Human Hemoglobin Preparations
Morrow J, Keim P, Visscher R, Marshall R, Gurd F. Interaction of 13CO2 and Bicarbonate with Human Hemoglobin Preparations. Proceedings Of The National Academy Of Sciences Of The United States Of America 1973, 70: 1414-1418. PMID: 4514311, PMCID: PMC433509, DOI: 10.1073/pnas.70.5.1414.Peer-Reviewed Original Research