Featured Publications
Genetics of substance use disorders in the era of big data
Gelernter J, Polimanti R. Genetics of substance use disorders in the era of big data. Nature Reviews Genetics 2021, 22: 712-729. PMID: 34211176, PMCID: PMC9210391, DOI: 10.1038/s41576-021-00377-1.Peer-Reviewed Original Research
2018
Translational studies support a role for serotonin 2B receptor (HTR2B) gene in aggression-related cannabis response
Montalvo-Ortiz JL, Zhou H, D’Andrea I, Maroteaux L, Lori A, Smith A, Ressler KJ, Nuñez YZ, Farrer LA, Zhao H, Kranzler HR, Gelernter J. Translational studies support a role for serotonin 2B receptor (HTR2B) gene in aggression-related cannabis response. Molecular Psychiatry 2018, 23: 2277-2286. PMID: 29875475, PMCID: PMC6281782, DOI: 10.1038/s41380-018-0077-6.Peer-Reviewed Original ResearchConceptsGrady Trauma ProjectAfrican AmericansWild-type miceReceptor geneEffects of cannabisWide significant risk lociResident-intruder paradigmImpulsivity/aggressionConcordant findingsTHC administrationKnockout miceTranslational studiesAA subjectsCannabis useStudy designTrauma ProjectAdverse effectsMiceCannabisAggressive behaviorEuropean AmericansNominal associationAdverse consequencesGenome-wide association study (GWAS) designRisk lociGenome-wide Association Study Identifies a Regulatory Variant of RGMA Associated With Opioid Dependence in European Americans
Cheng Z, Zhou H, Sherva R, Farrer LA, Kranzler HR, Gelernter J. Genome-wide Association Study Identifies a Regulatory Variant of RGMA Associated With Opioid Dependence in European Americans. Biological Psychiatry 2018, 84: 762-770. PMID: 29478698, PMCID: PMC6041180, DOI: 10.1016/j.biopsych.2017.12.016.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesAssociation studiesHomologous mouse geneMouse geneAxon guidance proteinRegulatory variantsCoexpression analysisOpioid dependenceTranscript variantsGenetic studiesChromosome 15Guidance proteinsRNA expressionNominal significanceMessenger RNA expressionGenesRepulsive guidance molecule AHigh expressionRGMaRisk allelesChronic morphine injectionDSM-IV diagnosisExpressionNew leadsMorphine injection
2017
Genomewide Association Study of Alcohol Dependence Identifies Risk Loci Altering Ethanol‐Response Behaviors in Model Organisms
Adkins AE, Hack LM, Bigdeli TB, Williamson VS, McMichael GO, Mamdani M, Edwards AC, Aliev F, Chan RF, Bhandari P, Raabe RC, Alaimo JT, Blackwell GG, Moscati A, Poland RS, Rood B, Patterson DG, Walsh D, Consortium C, Whitfield JB, Zhu G, Montgomery GW, Henders AK, Martin NG, Heath AC, Madden PAF, Frank J, Ridinger M, Wodarz N, Soyka M, Zill P, Ising M, Nöthen MM, Kiefer F, Rietschel M, Consortium T, Gelernter J, Sherva R, Koesterer R, Almasy L, Zhao H, Kranzler HR, Farrer LA, Maher BS, Prescott CA, Dick DM, Bacanu SA, Mathies LD, Davies AG, Vladimirov VI, Grotewiel M, Bowers MS, Bettinger JC, Webb BT, Miles MF, Kendler KS, Riley BP. Genomewide Association Study of Alcohol Dependence Identifies Risk Loci Altering Ethanol‐Response Behaviors in Model Organisms. Alcohol Clinical And Experimental Research 2017, 41: 911-928. PMID: 28226201, PMCID: PMC5404949, DOI: 10.1111/acer.13362.Peer-Reviewed Original ResearchConceptsModel organismsGenomewide association studiesLoss of functionAssociation studiesPrimate-specific genesAcute functional toleranceOrthologous genesCaenorhabditis elegansSuggestive signalsOrthologsExpression differencesGene expressionCOL6A3 expressionGenesAlcohol dependenceNucleus accumbensKLF12 expressionSuggestive associationElegansCOL6A3AD liabilityPotential involvementMultiple brain functionsEtOH sensitivityKLF12
2016
The role of genes involved in stress, neural plasticity, and brain circuitry in depressive phenotypes: Convergent findings in a mouse model of neglect
Montalvo-Ortiz JL, Bordner KA, Carlyle BC, Gelernter J, Simen AA, Kaufman J. The role of genes involved in stress, neural plasticity, and brain circuitry in depressive phenotypes: Convergent findings in a mouse model of neglect. Behavioural Brain Research 2016, 315: 71-74. PMID: 27506655, PMCID: PMC5396458, DOI: 10.1016/j.bbr.2016.08.010.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDepressionDisease Models, AnimalGene Expression RegulationInhibitor of Differentiation ProteinsMaleMaternal DeprivationMaze LearningMiceMice, Inbred C57BLMice, Inbred DBAMicroarray AnalysisNerve Tissue ProteinsNeuronal PlasticityPrefrontal CortexReceptors, N-Methyl-D-AspartateRNA, MessengerStress, PsychologicalSwimmingConceptsTubulin Polymerization Promoting ProteinRole of genesGene expression dataEpigenetic changesGene expressionPhenotype dataExpression dataPrefrontal cortex tissueGenesSecondary analysisMedial prefrontal cortex (mPFC) tissueGlutamate NMDA receptorsAdult male miceId-3Early life stressPhenotypeSwimming testMale miceNMDA receptorsDepression riskMaternal separationMouse modelDepressive phenotypeBrain circuitryBehavioral differences
2015
RDoC and translational perspectives on the genetics of trauma‐related psychiatric disorders
Montalvo-Ortiz JL, Gelernter J, Hudziak J, Kaufman J. RDoC and translational perspectives on the genetics of trauma‐related psychiatric disorders. American Journal Of Medical Genetics Part B Neuropsychiatric Genetics 2015, 171: 81-91. PMID: 26592203, PMCID: PMC4754782, DOI: 10.1002/ajmg.b.32395.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsStress-related psychiatric disordersPsychiatric disordersTrauma-related psychiatric disordersAdverse early life experiencesSubstance use disordersGenetic risk factorsKey brain structuresDistinct neural circuitsDistinct psychiatric disordersSubstance use problemsClinical syndromeRisk factorsHigh riskPsychiatric problemsUse disordersAdverse early experiencesTranslational studiesGenome-wide association studiesClinical phenotypeNeural circuitsBrain structuresResearch Domain Criteria frameworkCircuitry developmentEarly life experiencesAnxiety disordersEvidence of CNIH3 involvement in opioid dependence
Nelson EC, Agrawal A, Heath AC, Bogdan R, Sherva R, Zhang B, Al-Hasani R, Bruchas MR, Chou YL, Demers CH, Carey CE, Conley ED, Fakira AK, Farrer LA, Goate A, Gordon S, Henders AK, Hesselbrock V, Kapoor M, Lynskey MT, Madden PA, Moron JA, Rice JP, Saccone NL, Schwab SG, Shand FL, Todorov AA, Wallace L, Wang T, Wray NR, Zhou X, Degenhardt L, Martin NG, Hariri AR, Kranzler HR, Gelernter J, Bierut LJ, Clark DJ, Montgomery GW. Evidence of CNIH3 involvement in opioid dependence. Molecular Psychiatry 2015, 21: 608-614. PMID: 26239289, PMCID: PMC4740268, DOI: 10.1038/mp.2015.102.Peer-Reviewed Original ResearchConceptsSingle nucleotide polymorphismsGenome-wide association studiesComputational genetic analysisEpigenetic annotationsGenetic analysisAssociation studiesGenetic studiesStudy of AddictionVivo functionalityMouse strainsOpioid dependenceNeurogenetics StudySevere addictive disordersΑ-aminoGenesOpioid misusersGeneticsCnih3SNPsDuke Neurogenetics StudyHaplotypesPhenotypeA alleleAllelesFetal brain
2014
Nf1 Regulates Alcohol Dependence-Associated Excessive Drinking and Gamma-Aminobutyric Acid Release in the Central Amygdala in Mice and Is Associated with Alcohol Dependence in Humans
Repunte-Canonigo V, Herman MA, Kawamura T, Kranzler HR, Sherva R, Gelernter J, Farrer LA, Roberto M, Sanna PP. Nf1 Regulates Alcohol Dependence-Associated Excessive Drinking and Gamma-Aminobutyric Acid Release in the Central Amygdala in Mice and Is Associated with Alcohol Dependence in Humans. Biological Psychiatry 2014, 77: 870-879. PMID: 25483400, PMCID: PMC4428692, DOI: 10.1016/j.biopsych.2014.07.031.Peer-Reviewed Original ResearchConceptsChronic intermittent ethanol vapor exposureGABA releaseWild-type miceGamma-aminobutyric acidAlcohol dependenceCentral amygdalaGamma-aminobutyric acid releaseIntermittent ethanol vapor exposureExcessive drinkingMouse central amygdalaEthanol vapor exposureHeterozygous null miceAlcohol dependence riskInduction of dependenceAlcohol drinkingAlcohol-related behaviorsDependent drinkingBinge drinkingTranslational investigationsNull miceCentral nucleusType 1 geneMiceAmygdalaAcid releaseGenetic risk prediction and neurobiological understanding of alcoholism
Levey DF, Le-Niculescu H, Frank J, Ayalew M, Jain N, Kirlin B, Learman R, Winiger E, Rodd Z, Shekhar A, Schork N, Kiefe F, Wodarz N, Müller-Myhsok B, Dahmen N, Nöthen M, Sherva R, Farrer L, Smith A, Kranzler H, Rietschel M, Gelernter J, Niculescu A. Genetic risk prediction and neurobiological understanding of alcoholism. Translational Psychiatry 2014, 4: e391-e391. PMID: 24844177, PMCID: PMC4035721, DOI: 10.1038/tp.2014.29.Peer-Reviewed Original ResearchConceptsTop candidate genesCandidate genesGenetic risk predictionGenome-wide association study dataFunctional genomics approachConvergent functional genomics approachAssociation study dataGene expression dataInitial discovery stepGenomic approachesKey genesSignal transductionSignificant genetic overlapTop genesRelevant genesBiological pathwaysExpression dataTop findingsGenesStrict Bonferroni correctionGenetic overlapProtein knockout miceSmall panelFatty acidsKnockout miceRare Human Nicotinic Acetylcholine Receptor α4 Subunit (CHRNA4) Variants Affect Expression and Function of High-Affinity Nicotinic Acetylcholine Receptors
McClure-Begley TD, Papke RL, Stone KL, Stokes C, Levy AD, Gelernter J, Xie P, Lindstrom J, Picciotto MR. Rare Human Nicotinic Acetylcholine Receptor α4 Subunit (CHRNA4) Variants Affect Expression and Function of High-Affinity Nicotinic Acetylcholine Receptors. Journal Of Pharmacology And Experimental Therapeutics 2014, 348: 410-420. PMID: 24385388, PMCID: PMC3935145, DOI: 10.1124/jpet.113.209767.Peer-Reviewed Original ResearchConceptsNicotinic acetylcholine receptorsRare variantsSingle amino acid substitutionLaevis oocytesAmino acid substitutionsΑ4β2 nAChRsAcetylcholine receptorsIntracellular interactomesHEK-293 cellsX. laevis oocytesProteomic analysisGenetic variationHuman α4β2 nAChRsXenopus laevis oocytesVoltage-clamp electrophysiologyNeuronal nicotinic acetylcholine receptorsHigh-affinity nicotinic acetylcholine receptorsSubcellular distributionAcid substitutionsΑ4 nAChR subunitCohort of smokersEffects of nicotineNAChR subunitsCommon variantsΑ4 nAChR
2011
ACSL6 Is Associated with the Number of Cigarettes Smoked and Its Expression Is Altered by Chronic Nicotine Exposure
Chen J, Brunzell DH, Jackson K, van der Vaart A, Z. J, Payne TJ, Sherva R, Farrer LA, Gejman P, Levinson DF, Holmans P, Aggen SH, Damaj I, Kuo PH, Webb BT, Anton R, Kranzler HR, Gelernter J, Li MD, Kendler KS, Chen X. ACSL6 Is Associated with the Number of Cigarettes Smoked and Its Expression Is Altered by Chronic Nicotine Exposure. PLOS ONE 2011, 6: e28790. PMID: 22205969, PMCID: PMC3243669, DOI: 10.1371/journal.pone.0028790.Peer-Reviewed Original ResearchConceptsACSL6 geneNicotine exposureNicotinic receptor antagonist mecamylaminePrevious schizophrenia studiesChronic nicotine exposureNicotinic receptor activationHippocampus of miceNumber of cigarettesOsmotic mini pumpsQuantity of cigarettesNon-schizophrenic subjectsAssociation of schizophreniaCigarettes SmokedHeavy smokersTobacco smokingNicotine administrationAntagonist mecamylamineControl subjectsIndependent associationTobacco dependenceFTND scoreHigh riskMini pumpsChronic exposureReceptor activationEarly-life stress, corpus callosum development, hippocampal volumetrics, and anxious behavior in male nonhuman primates
Jackowski A, Perera TD, Abdallah CG, Garrido G, Tang CY, Martinez J, Mathew SJ, Gorman JM, Rosenblum LA, Smith EL, Dwork AJ, Shungu DC, Kaffman A, Gelernter J, Coplan JD, Kaufman J. Early-life stress, corpus callosum development, hippocampal volumetrics, and anxious behavior in male nonhuman primates. Psychiatry Research 2011, 192: 37-44. PMID: 21377844, PMCID: PMC4090111, DOI: 10.1016/j.pscychresns.2010.11.006.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsAnxietyBehavior, AnimalBrain MappingCorpus CallosumCross-Sectional StudiesFearGene FrequencyGenotypeHippocampusImage Processing, Computer-AssistedLinear ModelsMacaca radiataMagnetic Resonance ImagingMaleSerotonin Plasma Membrane Transport ProteinsStress, PsychologicalConceptsBrain developmentNonhuman primatesCorpus callosum measurementsMale bonnet monkeysMiddle temporal gyrus volumeCorpus callosum developmentMale nonhuman primatesEarly life stressReduced hippocampusCorpus callosumMRI measuresBonnet monkeysPsychiatric disordersMRI scansHippocampal volumetricsSerotonin transporter genotypeCC sizeStress paradigmHippocampusStress reactivityMorphometry assessmentBehavioral assessmentTransporter genotypeAnxious behaviorEarly stress
2010
Early-life stress, corticotropin-releasing factor, and serotonin transporter gene: A pilot study
Coplan JD, Abdallah CG, Kaufman J, Gelernter J, Smith EL, Perera TD, Dwork AJ, Kaffman A, Gorman JM, Rosenblum LA, Owens MJ, Nemeroff CB. Early-life stress, corticotropin-releasing factor, and serotonin transporter gene: A pilot study. Psychoneuroendocrinology 2010, 36: 289-293. PMID: 20692103, PMCID: PMC3017732, DOI: 10.1016/j.psyneuen.2010.07.011.Peer-Reviewed Original ResearchConceptsEarly life stressCSF CRF concentrationsCRF concentrationsCerebrospinal fluid corticotropin-releasing factor concentrationsCorticotropin-releasing factor concentrationsPilot studyNonhuman primate modelCorticotropin-releasing factorYears of ageEarly life adversitySerotonin transporter gene polymorphismPersistent elevationTransporter gene polymorphismPrimate modelMajor depressionCSF samplesDepressive symptomsGene polymorphismsAllele groupFactor concentrationsLFD conditionsMale bonnet macaquesChildhood abuseSubsequent developmentBonnet macaquesThe role of early life stress in development of the anterior limb of the internal capsule in nonhuman primates
Coplan JD, Abdallah CG, Tang CY, Mathew SJ, Martinez J, Hof PR, Smith EL, Dwork AJ, Perera TD, Pantol G, Carpenter D, Rosenblum LA, Shungu DC, Gelernter J, Kaffman A, Jackowski A, Kaufman J, Gorman JM. The role of early life stress in development of the anterior limb of the internal capsule in nonhuman primates. Neuroscience Letters 2010, 480: 93-96. PMID: 20541590, PMCID: PMC2951885, DOI: 10.1016/j.neulet.2010.06.012.Peer-Reviewed Original ResearchConceptsDeep brain stimulationInternal capsuleDiffusion tensor imagingWhite matterFractional anisotropyAnterior limbNonhuman primate modelWhite matter impairmentAdult male bonnet macaquesOccipital white matterEarly life stressWhite matter tract integrityWhite matter integrityParental verbal abuseMother-infant attachmentPrimate modelPosterior limbBrain stimulationTract integrityTensor imagingAnxiety disordersAnxiety scoresMale bonnet macaquesLife stressSignificant reduction
2009
Twenty-one-base-pair insertion polymorphism creates an enhancer element and potentiates SLC6A1 GABA transporter promoter activity
Hirunsatit R, George ED, Lipska BK, Elwafi HM, Sander L, Yrigollen CM, Gelernter J, Grigorenko EL, Lappalainen J, Mane S, Nairn AC, Kleinman JE, Simen AA. Twenty-one-base-pair insertion polymorphism creates an enhancer element and potentiates SLC6A1 GABA transporter promoter activity. Pharmacogenetics And Genomics 2009, 19: 53-65. PMID: 19077666, PMCID: PMC2791799, DOI: 10.1097/fpc.0b013e328318b21a.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAgedAnimalsBase SequenceBlack or African AmericanCase-Control StudiesCell LineDNA PrimersEnhancer Elements, GeneticFemaleGABA Plasma Membrane Transport ProteinsGene ExpressionHippocampusHumansMaleMiceMiddle AgedMinisatellite RepeatsMolecular Sequence DataMutagenesis, InsertionalPharmacogeneticsPolymorphism, GeneticPromoter Regions, GeneticRecombinant ProteinsRNA, MessengerSchizophreniaSequence Homology, Nucleic AcidTranscriptional ActivationYoung Adult
2008
Genetic Variants of Nogo-66 Receptor with Possible Association to Schizophrenia Block Myelin Inhibition of Axon Growth
Budel S, Padukkavidana T, Liu BP, Feng Z, Hu F, Johnson S, Lauren J, Park JH, McGee AW, Liao J, Stillman A, Kim JE, Yang BZ, Sodi S, Gelernter J, Zhao H, Hisama F, Arnsten AF, Strittmatter SM. Genetic Variants of Nogo-66 Receptor with Possible Association to Schizophrenia Block Myelin Inhibition of Axon Growth. Journal Of Neuroscience 2008, 28: 13161-13172. PMID: 19052207, PMCID: PMC2892845, DOI: 10.1523/jneurosci.3828-08.2008.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrainChick EmbryoChlorocebus aethiopsChromosome MappingCodonCOS CellsFemaleGenetic Predisposition to DiseaseGPI-Linked ProteinsGrowth ConesGrowth InhibitorsHumansMaleMiceMice, KnockoutMutationMyelin ProteinsNerve Fibers, MyelinatedNeurogenesisNeuronal PlasticityNogo Receptor 1Organ Culture TechniquesRatsReceptors, Cell SurfaceSchizophreniaConceptsMyelin inhibitionNogo-66 receptorCase-control analysisMyelin-specific genesAxonal sproutingMyelin signalGenetic predispositionAxon inhibitionNeuronal culturesPossible associationReceptor 1Disease riskAxon growthSchizophreniaAxonal proteinsPotential endophenotypeMemory functionGenetic variantsDysfunctional proteinsInhibitionSchizophrenia susceptibilityDominant negativeProtein exhibitCandidate genesChromosome 22q11It Is Time to Take a Stand for Medical Research and Against Terrorism Targeting Medical Scientists
Krystal JH, Carter CS, Geschwind D, Manji HK, March JS, Nestler EJ, Zubieta JK, Charney DS, Goldman D, Gur RE, Lieberman JA, Roy-Byrne P, Rubinow DR, Anderson SA, Barondes S, Berman KF, Blair J, Braff DL, Brown ES, Calabrese JR, Carlezon WA, Cook EH, Davidson RJ, Davis M, Desimone R, Drevets WC, Duman RS, Essock SM, Faraone SV, Freedman R, Friston KJ, Gelernter J, Geller B, Gill M, Gould E, Grace AA, Grillon C, Gueorguieva R, Hariri AR, Innis RB, Jones EG, Kleinman JE, Koob GF, Krystal AD, Leibenluft E, Levinson DF, Levitt PR, Lewis DA, Liberzon I, Lipska BK, Marder SR, Markou A, Mason GF, McDougle CJ, McEwen BS, McMahon FJ, Meaney MJ, Meltzer HY, Merikangas KR, Meyer-Lindenberg A, Mirnics K, Monteggia LM, Neumeister A, O’Brien C, Owen MJ, Pine DS, Rapoport JL, Rauch SL, Robbins TW, Rosenbaum JF, Rosenberg DR, Ross CA, Rush AJ, Sackeim HA, Sanacora G, Schatzberg AF, Shaham Y, Siever LJ, Sunderland T, Tecott LH, Thase ME, Todd RD, Weissman MM, Yehuda R, Yoshikawa T, Young EA, McCandless R. It Is Time to Take a Stand for Medical Research and Against Terrorism Targeting Medical Scientists. Biological Psychiatry 2008, 63: 725-727. PMID: 18371494, DOI: 10.1016/j.biopsych.2008.03.005.Peer-Reviewed Original ResearchQuantitative Trait Locus Analysis Identifies Rat Genomic Regions Related to Amphetamine-Induced Locomotion and Gαi3 Levels in Nucleus Accumbens
Potenza MN, Brodkin ES, Yang BZ, Birnbaum SG, Nestler EJ, Gelernter J. Quantitative Trait Locus Analysis Identifies Rat Genomic Regions Related to Amphetamine-Induced Locomotion and Gαi3 Levels in Nucleus Accumbens. Neuropsychopharmacology 2008, 33: 2735-2746. PMID: 18216777, PMCID: PMC2818767, DOI: 10.1038/sj.npp.1301667.Peer-Reviewed Original ResearchConceptsQuantitative trait lociRobust quantitative trait lociGenomic regionsChromosome 2Quantitative trait locus (QTL) analysisG protein levelsCommon genetic mechanismQTL patternsTrait lociRat genomic regionsGenetic mechanismsChromosome 3Locus analysisChromosome 13Genetic factorsGαi3LociAmphetamine-Induced LocomotionBetter understandingLocomotionRegionAnimal modelsSignificant implicationsLevelsNovelty-induced locomotion
2006
Human clock, PER1 and PER2 polymorphisms: lack of association with cocaine dependence susceptibility and cocaine-induced paranoia
Malison RT, Kranzler HR, Yang BZ, Gelernter J. Human clock, PER1 and PER2 polymorphisms: lack of association with cocaine dependence susceptibility and cocaine-induced paranoia. Psychiatric Genetics 2006, 16: 245-249. PMID: 17106427, DOI: 10.1097/01.ypg.0000242198.59020.ca.Peer-Reviewed Original ResearchConceptsSingle nucleotide polymorphismsNucleotide polymorphismsCircadian rhythm genesDrosophila melanogasterHuman orthologGenetic variationCocaine-induced paranoiaGenetic mechanismsRhythm genesGene single nucleotide polymorphismsPopulation comparisonsHuman clockLack of associationPotential involvementAllelic associationClinical featuresAllele frequenciesStimulant exposureBehavioral sensitizationLocomotor sensitizationPsychostimulant addictionDrug useClinical phenotypeCocaine dependencePER2 polymorphisms
2004
Genomic regions controlling corticosterone levels in rats
Potenza MN, Brodkin ES, Joe B, Luo X, Remmers EF, Wilder RL, Nestler EJ, Gelernter J. Genomic regions controlling corticosterone levels in rats. Biological Psychiatry 2004, 55: 634-641. PMID: 15013833, DOI: 10.1016/j.biopsych.2003.11.005.Peer-Reviewed Original ResearchConceptsGenomic regionsQuantitative trait locus (QTL) analysisGenome-wide levelSpecific genomic regionsUnderstanding of susceptibilitySignificant QTLGenomic backgroundChromosome 4Locus analysisF2 progenyGenetic differencesSuggestive significanceDisease susceptibilityQTLFirst identificationCongenic animalsDeoxyribonucleic acidGenetic factorsProgenyIdentificationRegionSusceptibilityLevels