2021
tRNA-like leader-trailer interaction promotes 3′-end maturation of MALAT1
Torabi SF, DeGregorio SJ, Steitz JA. tRNA-like leader-trailer interaction promotes 3′-end maturation of MALAT1. RNA 2021, 27: 1140-1147. PMID: 34253686, PMCID: PMC8457004, DOI: 10.1261/rna.078810.121.Peer-Reviewed Original ResearchStructural analyses of an RNA stability element interacting with poly(A)
Torabi SF, Chen YL, Zhang K, Wang J, DeGregorio SJ, Vaidya AT, Su Z, Pabit SA, Chiu W, Pollack L, Steitz JA. Structural analyses of an RNA stability element interacting with poly(A). Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2026656118. PMID: 33785601, PMCID: PMC8040590, DOI: 10.1073/pnas.2026656118.Peer-Reviewed Original ResearchMeSH KeywordsDNA Transposable ElementsHEK293 CellsHumansNucleotide MotifsOryzaPolyadenylationRNARNA StabilityConceptsRNA stability elementCis-acting RNA elementsGlobal conformational changesRich internal loopCryo-electron microscopyRice transposable elementsDiverse genomesDouble-helical regionsSmall-angle X-ray scatteringEne motifTransposable elementsGlobal structural changesRNA interactionsRNA stabilityBioinformatics studiesRNA elementsStability elementShort helixConformational changesDecay pathwaysInternal loopBiochemical structureTriplex structureBindingMotifHyperosmotic stress alters the RNA polymerase II interactome and induces readthrough transcription despite widespread transcriptional repression
Rosa-Mercado NA, Zimmer JT, Apostolidi M, Rinehart J, Simon MD, Steitz JA. Hyperosmotic stress alters the RNA polymerase II interactome and induces readthrough transcription despite widespread transcriptional repression. Molecular Cell 2021, 81: 502-513.e4. PMID: 33400923, PMCID: PMC7867636, DOI: 10.1016/j.molcel.2020.12.002.Peer-Reviewed Original ResearchConceptsWidespread transcriptional repressionTranscriptional repressionPol IIIntegrator complex subunitsRNA polymerase IIGenome-wide lossStress-induced redistributionParental genesTranscriptional outputDoG inductionPolymerase IIChIP sequencingHuman cell linesUpstream geneComplex subunitsPolyadenylation factorsTranscription profilesReadthrough transcriptsCatalytic subunitIntegrator activityCellular stressHyperosmotic stressTranscriptional levelTranscription resultsGenes
2019
Structural Basis for Target-Directed MicroRNA Degradation
Sheu-Gruttadauria J, Pawlica P, Klum SM, Wang S, Yario TA, Schirle Oakdale NT, Steitz JA, MacRae IJ. Structural Basis for Target-Directed MicroRNA Degradation. Molecular Cell 2019, 75: 1243-1255.e7. PMID: 31353209, PMCID: PMC6754277, DOI: 10.1016/j.molcel.2019.06.019.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArgonaute ProteinsHEK293 CellsHumansMicroRNAsNucleic Acid ConformationRNA StabilitySf9 CellsSpodopteraConceptsTarget-directed miRNA degradationMiRNA 3' endMicroRNA degradationMiRNA degradationHuman Ago2MiRNA activityMiRNA stabilityStructural basisGene expressionTarget RNALinker flexibilityMiRNAsEnd displaysFlexible linkerRNAKey determinantArgonauteHAgo2Enzymatic attackAgo2DegradationDuplexMicroRNAsMiRNAIsoforms
2018
Two herpesviral noncoding PAN RNAs are functionally homologous but do not associate with common chromatin loci
Withers JB, Li ES, Vallery TK, Yario TA, Steitz JA. Two herpesviral noncoding PAN RNAs are functionally homologous but do not associate with common chromatin loci. PLOS Pathogens 2018, 14: e1007389. PMID: 30383841, PMCID: PMC6233925, DOI: 10.1371/journal.ppat.1007389.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineCell NucleusChromatinGene Expression Regulation, ViralGene Knockdown TechniquesHEK293 CellsHerpesviridaeHerpesviridae InfectionsHerpesvirus 8, HumanHost-Pathogen InteractionsHumansMacaca mulattaRhadinovirusRNA, Long NoncodingRNA, MessengerRNA, NuclearRNA, ViralTumor Virus InfectionsViral ProteinsVirus ReplicationConceptsKaposi's sarcoma-associated herpesvirusPAN RNAPAN RNA expressionGene expressionChromatin lociSarcoma-associated herpesvirusViral mRNAsSpecific chromatin lociNuclear mRNA exportNucleotide sequence conservationAbundant nuclear RNARNA expressionLytic viral gene expressionViral gene expressionMRNA exportRNA associationSequence conservationPolyadenylated transcriptsViral chromatinLoci differHost chromatinRNA functionCell fractionationNuclear RNAProgeny virion release
2017
An Exportin-1–dependent microRNA biogenesis pathway during human cell quiescence
Martinez I, Hayes KE, Barr JA, Harold AD, Xie M, Bukhari SIA, Vasudevan S, Steitz JA, DiMaio D. An Exportin-1–dependent microRNA biogenesis pathway during human cell quiescence. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: e4961-e4970. PMID: 28584122, PMCID: PMC5488920, DOI: 10.1073/pnas.1618732114.Peer-Reviewed Original ResearchConceptsBiogenesis pathwayExportin 1Exportin-5Canonical miRNA biogenesis pathwayCanonical miRNA biogenesisTrimethylguanosine synthase 1MicroRNA biogenesis pathwayMiRNA biogenesis pathwayMiRNA processing pathwayStem cell biologyCellular growth arrestGroup of miRNAsExpression of miRNAsPrimary human fibroblastsMiRNA biogenesisPrimary miRNAsCellular quiescenceTissue homeostasisCell biologyProliferative arrestSpecific miRNAsCell quiescenceGrowth arrestBiogenesisMiRNAs
2016
Methyltransferase-like protein 16 binds the 3′-terminal triple helix of MALAT1 long noncoding RNA
Brown JA, Kinzig CG, DeGregorio SJ, Steitz JA. Methyltransferase-like protein 16 binds the 3′-terminal triple helix of MALAT1 long noncoding RNA. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: 14013-14018. PMID: 27872311, PMCID: PMC5150381, DOI: 10.1073/pnas.1614759113.Peer-Reviewed Original ResearchConceptsGel shift assaysMetastasis-associated lung adenocarcinoma transcript 1RNA triple helicesPutative RNA methyltransferaseCompetitive gel shift assaysRNA-protein interactionsRNA stability elementAbundant nuclear proteinNative gel shift assaysRich internal loopSitu proximity ligation assayTriple helixHEK293T cell lysatesStem-loop structureProximity ligation assayT cell lysatesRNA methyltransferaseVivo UVNucleotide compositionNuclear proteinsLung adenocarcinoma transcript 1RNA immunoprecipitationStability elementMETTL16Rich tractA proximity-dependent assay for specific RNA–protein interactions in intact cells
Zhang W, Xie M, Shu MD, Steitz JA, DiMaio D. A proximity-dependent assay for specific RNA–protein interactions in intact cells. RNA 2016, 22: 1785-1792. PMID: 27659050, PMCID: PMC5066630, DOI: 10.1261/rna.058248.116.Peer-Reviewed Original ResearchMeSH KeywordsCell CompartmentationHEK293 CellsHeLa CellsHumansRNA, Small NuclearRNA-Binding ProteinsConceptsRNA-protein interactionsSpecific RNA-protein interactionsProximity ligation assayTarget RNAProtein-protein interactionsSame cellular compartmentCellular compartmentsRNA targetsIntact cellsLigation assayRNADiscrete compartmentsProteinDNA oligonucleotideFluorescent signalOligonucleotide complementaryCellsCompartmentsAssaysColocalizationHigh specificityInteractionStaining methodOligonucleotideAdaptationIntronless β-Globin Reporter: A Tool for Studying Nuclear RNA Stability Elements
Brown JA, Steitz JA. Intronless β-Globin Reporter: A Tool for Studying Nuclear RNA Stability Elements. Methods In Molecular Biology 2016, 1428: 77-92. PMID: 27236793, PMCID: PMC5547891, DOI: 10.1007/978-1-4939-3625-0_5.Peer-Reviewed Original ResearchMyriad Triple-Helix-Forming Structures in the Transposable Element RNAs of Plants and Fungi
Tycowski KT, Shu MD, Steitz JA. Myriad Triple-Helix-Forming Structures in the Transposable Element RNAs of Plants and Fungi. Cell Reports 2016, 15: 1266-1276. PMID: 27134163, PMCID: PMC4864102, DOI: 10.1016/j.celrep.2016.04.010.Peer-Reviewed Original ResearchConceptsTransposable elementsCellular noncoding RNAsPotential evolutionary consequencesCis-acting RNA structuresIntron lossEvolutionary consequencesBioinformatic identificationTE transcriptsReporter transcriptFish speciesNoncoding RNAsElement RNAHorizontal transferRNA structureTransposase geneRich tractHuman cellsTriple helix formationBase triplesRNAEne coreTranscriptsTriple helixIntronlessGenomeEBV noncoding RNA EBER2 interacts with host RNA-binding proteins to regulate viral gene expression
Lee N, Yario TA, Gao JS, Steitz JA. EBV noncoding RNA EBER2 interacts with host RNA-binding proteins to regulate viral gene expression. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: 3221-3226. PMID: 26951683, PMCID: PMC4812724, DOI: 10.1073/pnas.1601773113.Peer-Reviewed Original ResearchConceptsNon-POU domain-containing octamer-binding proteinGene expressionNoncoding RNAsHost RNAAbundant noncoding RNAsCellular noncoding RNAsRNA-protein crosslinkingOctamer-binding proteinHost gene expressionBox protein 5Viral gene expressionHost transcription factorsGlutamine richFactor prolineIntermediary proteinsNuclear bodiesTranscription factorsRNA 2Host proteinsRecombinant proteinsProtein resultsProtein componentsProtein 5Protein 14RNA
2015
A heterotrimer model of the complete Microprocessor complex revealed by single-molecule subunit counting
Herbert KM, Sarkar SK, Mills M, De la Herran H, Neuman KC, Steitz JA. A heterotrimer model of the complete Microprocessor complex revealed by single-molecule subunit counting. RNA 2015, 22: 175-183. PMID: 26683315, PMCID: PMC4712668, DOI: 10.1261/rna.054684.115.Peer-Reviewed Original ResearchConceptsPri-miRNA substratesMicroprocessor complexHeterotrimeric complexDeletion constructsSingle-molecule subunit countingRNA-binding proteinFull-length proteinAbsence of RNAStem-loop structureSingle-molecule photobleachingSize exclusion chromatographyPresence of RNARNaseIII enzymesPhotobleaching assaysMicroRNA biogenesisSubunit countingMammalian cellsDroshaDGCR8Fluorescent proteinHuman cellsMultiple copiesRNAProteinExact stoichiometryHerpesvirus saimiri MicroRNAs Preferentially Target Host Cell Cycle Regulators
Guo YE, Oei T, Steitz JA. Herpesvirus saimiri MicroRNAs Preferentially Target Host Cell Cycle Regulators. Journal Of Virology 2015, 89: 10901-10911. PMID: 26292323, PMCID: PMC4621106, DOI: 10.1128/jvi.01884-15.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBinding SitesBlotting, WesternCallithrixCDC2 Protein KinaseCell Cycle ProteinsEndoplasmic Reticulum Chaperone BiPHeat-Shock ProteinsHEK293 CellsHerpesvirus 2, SaimiriineHigh-Throughput Nucleotide SequencingHumansImmunoprecipitationLuciferasesMicroRNAsPhosphorylationRNA, MessengerT-LymphocytesConceptsHost cell cycle regulatorsViral miRNAsCell cycle regulatorsHerpesvirus saimiriMRNA targetsCycle regulatorsProtein-coding genesPre-miRNA hairpinsCross-linking immunoprecipitationGene ontology analysisHigh-throughput sequencingOpen reading frameOncogenic Herpesvirus saimiriCyclin-dependent kinasesP300 transcriptional coactivatorCell cycle progressionKey negative regulatorMarmoset T cellsHITS-CLIPRepresses expressionOntology analysisTranscriptional coactivatorViral life cyclePrimary transcriptCellular transformationThe host Integrator complex acts in transcription-independent maturation of herpesvirus microRNA 3′ ends
Xie M, Zhang W, Shu MD, Xu A, Lenis DA, DiMaio D, Steitz JA. The host Integrator complex acts in transcription-independent maturation of herpesvirus microRNA 3′ ends. Genes & Development 2015, 29: 1552-1564. PMID: 26220997, PMCID: PMC4526738, DOI: 10.1101/gad.266973.115.Peer-Reviewed Original ResearchConceptsEnd processing signalsSmall nuclear RNAProximity ligation assayEnd processingPre-miRNAsHerpesvirus saimiriPre-miRNA hairpinsRNA-protein interactionsSitu proximity ligation assayIntegrator complexMiRNA 3MiRNA biogenesisSnRNA 3Primary miRNAMiRNA hairpinsIntegrator activityNuclear RNASequence downstreamOncogenic γ-herpesvirusesRescue experimentsLigation assayVivo knockdownComplex actsΓ-herpesvirusesHairpin
2014
Nuclear Translocation and Regulation of Intranuclear Distribution of Cytoplasmic Poly(A)-Binding Protein Are Distinct Processes Mediated by Two Epstein Barr Virus Proteins
Park R, El-Guindy A, Heston L, Lin SF, Yu KP, Nagy M, Borah S, Delecluse HJ, Steitz J, Miller G. Nuclear Translocation and Regulation of Intranuclear Distribution of Cytoplasmic Poly(A)-Binding Protein Are Distinct Processes Mediated by Two Epstein Barr Virus Proteins. PLOS ONE 2014, 9: e92593. PMID: 24705134, PMCID: PMC3976295, DOI: 10.1371/journal.pone.0092593.Peer-Reviewed Original ResearchConceptsHost gene expressionIntranuclear distributionZEBRA mutantsReplication proteinsNuclear translocationGene expressionEssential replication proteinViral replication proteinsDownstream viral genesViral replication compartmentsLytic replicationNew protein synthesisBZIP proteinsGlobal shutoffViral alkaline nucleaseReplication compartmentsPABPCEssential functionsEpstein-Barr virus proteinsHost shutoffViral genesLytic programProtein synthesisBinding proteinProteinAlternative Capture of Noncoding RNAs or Protein-Coding Genes by Herpesviruses to Alter Host T Cell Function
Guo YE, Riley KJ, Iwasaki A, Steitz JA. Alternative Capture of Noncoding RNAs or Protein-Coding Genes by Herpesviruses to Alter Host T Cell Function. Molecular Cell 2014, 54: 67-79. PMID: 24725595, PMCID: PMC4039351, DOI: 10.1016/j.molcel.2014.03.025.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDAntigens, Differentiation, T-LymphocyteBase SequenceCallithrixEnzyme ActivationGene Expression RegulationGPI-Linked ProteinsGRB2 Adaptor ProteinHEK293 CellsHerpesvirus 2, SaimiriineHigh-Throughput Nucleotide SequencingHost-Pathogen InteractionsHumansImmunoprecipitationInterferon-gammaJurkat CellsLectins, C-TypeLymphocyte ActivationMicroRNAsMitogen-Activated Protein KinasesMolecular Sequence DataReceptors, Antigen, T-CellRNA StabilityRNA, UntranslatedRNA, ViralSemaphorinsSequence Analysis, RNASignal TransductionTime FactorsT-LymphocytesTransfectionConceptsMitogen-activated protein kinaseMiR-27Protein coding genesHerpesvirus saimiriHigh-throughput sequencingTCR-induced activationCell functionHSUR 1Γ-herpesvirusesNoncoding RNAsProtein kinaseEctopic expressionOncogenic γ-herpesvirusesTarget genesInduction of CD69MicroRNA-27Key modulatorRNACommon targetAlHV-1GenesCell receptorDiverse strategiesHost T-cell functionCells
2012
Human spliceosomal protein CWC22 plays a role in coupling splicing to exon junction complex deposition and nonsense-mediated decay
Alexandrov A, Colognori D, Shu MD, Steitz JA. Human spliceosomal protein CWC22 plays a role in coupling splicing to exon junction complex deposition and nonsense-mediated decay. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 21313-21318. PMID: 23236153, PMCID: PMC3535618, DOI: 10.1073/pnas.1219725110.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceCarrier ProteinsEukaryotic Initiation Factor-4AEukaryotic Initiation Factor-4GExonsGene Knockdown TechniquesHEK293 CellsHeLa CellsHumansMolecular Sequence DataMutationNonsense Mediated mRNA DecayNuclear ProteinsPeptidylprolyl IsomeraseProtein BindingRNA SplicingRNA, MessengerRNA-Binding ProteinsSpliceosomesConceptsExon junction complexEJC depositionMultiprotein exon junction complexNonsense-mediated decay pathwayNonsense-mediated decaySpecific roleEJC assemblyEJC formationComplex eukaryotesDisrupts associationMetazoan mRNAsSpliceosomal proteinsCellular mRNAsHost genesSplicing defectsJunction complexDownstream eventsSplicingNatural substrateDecay pathwaysCWC22Depletion yieldsNMDMutationsMRNAConservation of a Triple-Helix-Forming RNA Stability Element in Noncoding and Genomic RNAs of Diverse Viruses
Tycowski KT, Shu MD, Borah S, Shi M, Steitz JA. Conservation of a Triple-Helix-Forming RNA Stability Element in Noncoding and Genomic RNAs of Diverse Viruses. Cell Reports 2012, 2: 26-32. PMID: 22840393, PMCID: PMC3430378, DOI: 10.1016/j.celrep.2012.05.020.Peer-Reviewed Original ResearchConceptsPAN RNAKaposi's sarcoma-associated herpesvirusSarcoma-associated herpesvirusStructure-based bioinformaticsRNA decay pathwaysDiverse viral genomesRNA stability elementNuclear retention elementPositive-strand RNA virusesReporter transcriptMammalian herpesvirusesGenomic RNAStability elementDNA virusesHuman cellsTriple helix formationRNA virusesDiverse virusesViral genomeRNAAbundant expressionDecay pathwaysTriple helixRetention elementsRapid identificationEBV and human microRNAs co‐target oncogenic and apoptotic viral and human genes during latency
Riley KJ, Rabinowitz GS, Yario TA, Luna JM, Darnell RB, Steitz JA. EBV and human microRNAs co‐target oncogenic and apoptotic viral and human genes during latency. The EMBO Journal 2012, 31: 2207-2221. PMID: 22473208, PMCID: PMC3343464, DOI: 10.1038/emboj.2012.63.Peer-Reviewed Original ResearchConceptsHuman microRNAsLatent membrane protein 1Viral miRNA functionHigh-throughput sequencingHuman miRNA targetsMiRNA-binding sitesMiRNA functionEBV BHRF1Human genesMiRNA targetsMRNA targetsCellular miRNAsMembrane protein 1MiRNA clusterHuman miRNAsGene expressionCell cycleReporter assaysDistinct binding sitesViral mRNAsMiRNAsLytic genesLytic switchProtein 1EBV latent membrane protein 1
2011
A Viral Nuclear Noncoding RNA Binds Re-localized Poly(A) Binding Protein and Is Required for Late KSHV Gene Expression
Borah S, Darricarrère N, Darnell A, Myoung J, Steitz JA. A Viral Nuclear Noncoding RNA Binds Re-localized Poly(A) Binding Protein and Is Required for Late KSHV Gene Expression. PLOS Pathogens 2011, 7: e1002300. PMID: 22022268, PMCID: PMC3192849, DOI: 10.1371/journal.ppat.1002300.Peer-Reviewed Original ResearchConceptsPAN RNAKaposi's Sarcoma-Associated HerpesvirusNuclear noncoding RNANuclear noncoding RNAsShutoff effectLytic phaseKSHV gene expressionRepertoire of functionsTail of mRNATransient transfection experimentsConsequence of expressionLate viral proteinsNoncoding RNAsExonuclease proteinNuclear RNAProtein C1Translation efficiencyHost mRNAsMRNA stabilityGene expressionUnknown functionTransfection experimentsViral mRNAsPABPC1Binding protein