2019
Structural Basis for Target-Directed MicroRNA Degradation
Sheu-Gruttadauria J, Pawlica P, Klum SM, Wang S, Yario TA, Schirle Oakdale NT, Steitz JA, MacRae IJ. Structural Basis for Target-Directed MicroRNA Degradation. Molecular Cell 2019, 75: 1243-1255.e7. PMID: 31353209, PMCID: PMC6754277, DOI: 10.1016/j.molcel.2019.06.019.Peer-Reviewed Original ResearchConceptsTarget-directed miRNA degradationMiRNA 3' endMicroRNA degradationMiRNA degradationHuman Ago2MiRNA activityMiRNA stabilityStructural basisGene expressionTarget RNALinker flexibilityMiRNAsEnd displaysFlexible linkerRNAKey determinantArgonauteHAgo2Enzymatic attackAgo2DegradationDuplexMicroRNAsMiRNAIsoformsHow Complementary Targets Expose the microRNA 3′ End for Tailing and Trimming during Target-Directed microRNA Degradation
Pawlica P, Sheu-Gruttadauria J, MacRae IJ, Steitz JA. How Complementary Targets Expose the microRNA 3′ End for Tailing and Trimming during Target-Directed microRNA Degradation. Cold Spring Harbor Symposia On Quantitative Biology 2019, 84: 039321. PMID: 32019864, PMCID: PMC9161719, DOI: 10.1101/sqb.2019.84.039321.Peer-Reviewed Original ResearchTarget-directed miRNA degradationMiRNA 3' endCellular enzymesMiRNA seed sequencesMiRNA complementarityMiRNA decayArgonaute proteinsMicroRNA degradationMiRNA degradationMiRNA 5Posttranscriptional regulationMiRNA targetsCertain transcriptsSeed sequenceExtensive complementarityMolecular mechanismsMessenger RNATranscriptsEnzymeRegulationEnzymatic attackRecent advancesTargetMicroRNAsRNA
2018
Immunoprecipitation of Tri-methylated Capped RNA.
Hayes KE, Barr JA, Xie M, Steitz JA, Martinez I. Immunoprecipitation of Tri-methylated Capped RNA. Bio-protocol 2018, 8 PMID: 29527542, PMCID: PMC5842925, DOI: 10.21769/bioprotoc.2717.Peer-Reviewed Original ResearchPri-miRNAsCellular quiescenceAlternative miRNA biogenesis pathwaysMiRNA biogenesis pathwayNon-coding RNAsBiogenesis pathwayDNA replicationTotal RNA extractsRNA immunoprecipitationOrgan regenerationRNA extractsFibroblast cellsImmunoprecipitationRNASpecific isolationProteinQuiescenceWound healingImportant roleTrimethylguanosineMicroRNAsAutophagyCytoplasmP27Pathway
2016
Host miRNA degradation by Herpesvirus saimiri small nuclear RNA requires an unstructured interacting region
Pawlica P, Moss WN, Steitz JA. Host miRNA degradation by Herpesvirus saimiri small nuclear RNA requires an unstructured interacting region. RNA 2016, 22: 1181-1189. PMID: 27335146, PMCID: PMC4931111, DOI: 10.1261/rna.054817.115.Peer-Reviewed Original ResearchConceptsSmall nuclear RNAMiR-27Nuclear RNAVivo secondary structureBioinformatic structural analysisBinding site sequenceMiRNA degradationU RNARNA functionMutagenic analysisHSUR1Interacting regionsSite sequenceHost microRNAsSecondary structureHerpesvirus saimiriT cell activationOncogenic herpesvirusRNAStructural flexibilityDecreased levelsMutantsStructural analysisDegradationMicroRNAs
2014
Virus Meets Host MicroRNA: the Destroyer, the Booster, the Hijacker
Guo YE, Steitz JA. Virus Meets Host MicroRNA: the Destroyer, the Booster, the Hijacker. Molecular And Cellular Biology 2014, 34: 3780-3787. PMID: 25047834, PMCID: PMC4187717, DOI: 10.1128/mcb.00871-14.Peer-Reviewed Original ResearchConceptsKey regulatory stepSmall noncoding RNAsVirus-host interactionsViral life cycleNoncoding RNAsCellular miRNAsMiRNA interactionsRegulatory stepGene expressionProtein productionHost microRNAsRNA virusesRecent discoveryLife cycleMicroRNAsMiRNAsRNADNAMRNAVirusExpressionInteractionMinireviewDiscovery3′-Biotin-tagged microRNA-27 does not associate with Argonaute proteins in cells
Guo YE, Steitz JA. 3′-Biotin-tagged microRNA-27 does not associate with Argonaute proteins in cells. RNA 2014, 20: 985-988. PMID: 24821854, PMCID: PMC4114695, DOI: 10.1261/rna.045054.114.Peer-Reviewed Original ResearchVersatile microRNA biogenesis in animals and their viruses
Xie M, Steitz JA. Versatile microRNA biogenesis in animals and their viruses. RNA Biology 2014, 11: 673-681. PMID: 24823351, PMCID: PMC4156499, DOI: 10.4161/rna.28985.Peer-Reviewed Original ResearchConceptsEssential cellular processesMiRNA regulatory networkPost-transcriptional levelUbiquitous gene regulatorsNon-canonical pathwayMost miRNAsCytoplasmic DicerMicroRNA biogenesisMolecular machineryCellular processesRegulatory networksPrimary transcriptGene regulatorsNuclear DroshaCellular RNABiogenesisDroshaAlternative mechanismFundamental roleCleavage stepMetazoansDicerMiRNAsMicroRNAsMiRNA
2013
Mammalian 5′-Capped MicroRNA Precursors that Generate a Single MicroRNA
Xie M, Li M, Vilborg A, Lee N, Shu MD, Yartseva V, Šestan N, Steitz JA. Mammalian 5′-Capped MicroRNA Precursors that Generate a Single MicroRNA. Cell 2013, 155: 1568-1580. PMID: 24360278, PMCID: PMC3899828, DOI: 10.1016/j.cell.2013.11.027.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArgonaute ProteinsBase SequenceBiosynthetic PathwaysDEAD-box RNA HelicasesGenome-Wide Association StudyGuanosineHumansKaryopherinsMiceMicroRNAsMolecular Sequence DataReceptors, Cytoplasmic and NuclearRibonuclease IIIRNA CapsRNA Polymerase IIRNA, Small InterferingTranscription Termination, GeneticConceptsCap-binding protein eIF4EMiRNA biogenesis pathwayNuclear-cytoplasmic transportGuide strand selectionShRNA expression constructsTranscription start siteBiogenesis pathwayCytoplasmic DicerMicroprocessor complexTranscription terminationProtein eIF4EExportin-5MicroRNA precursorsMiRNA hairpinsPrimary transcriptStrand selectionGene regulatorsStart siteDicer cleavageExpression constructsSingle microRNAMiRNAsMicroRNAsPathwayMicroRNPs
2011
Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA–protein complexes (microRNPs)
Mortensen RD, Serra M, Steitz JA, Vasudevan S. Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA–protein complexes (microRNPs). Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 8281-8286. PMID: 21536868, PMCID: PMC3100953, DOI: 10.1073/pnas.1105401108.Peer-Reviewed Original ResearchConceptsMicroRNA–protein complexesProtein kinase AIIXenopus laevis oocytesImmature Xenopus laevis oocytesGene expression activationMammalian cell linesLaevis oocytesHuman Ago2Target reporterMammalian cellsExpression activationMyt1 kinaseGene expressionPosttranscriptional activationRegulated expressionSpecific mRNAsPhysiological relevanceQuiescent cellsMicroRNAsOocyte stateCell linesOocytesReporterCAMP levelsExpression
2010
Down-Regulation of a Host MicroRNA by a Herpesvirus saimiri Noncoding RNA
Cazalla D, Yario T, Steitz JA. Down-Regulation of a Host MicroRNA by a Herpesvirus saimiri Noncoding RNA. Science 2010, 328: 1563-1566. PMID: 20558719, PMCID: PMC3075239, DOI: 10.1126/science.1187197.Peer-Reviewed Original ResearchConceptsHSURs 1Noncoding RNAsHost cell gene expressionMiR-27Binding-dependent mannerPotential binding sitesMiRNA pathwayHost cell microRNAsCoimmunoprecipitation experimentsEctopic expressionTarget genesTransient knockdownGene expressionUnknown functionHost microRNAsViral strategiesDown regulationBinding sitesMiRNAsMicroRNAsRNAExpressionCellsT cellsNcRNA
2009
Nuclear networking fashions pre-messenger RNA and primary microRNA transcripts for function
Pawlicki JM, Steitz JA. Nuclear networking fashions pre-messenger RNA and primary microRNA transcripts for function. Trends In Cell Biology 2009, 20: 52-61. PMID: 20004579, PMCID: PMC2821161, DOI: 10.1016/j.tcb.2009.10.004.Peer-Reviewed Original ResearchConceptsMature messenger RNAGene expressionRNA polymerase II transcriptsProtein-coding genesPolymerase II transcriptsRNA polymerase IIMessenger RNAPre-messenger RNARNA processing reactionsCotranscriptional eventsPolymerase IIProcessing eventsProcessing reactionsExtensive molecular interactionsEarly stepsTranscriptsRNAExquisite couplingMolecular interactionsMicroRNAsExpressionNuclear networkCrucial roleFinal fateSplicingRegulating the activity of microRNPs in vertebrate cells
Steitz J, Vasudevan S, Cazalla D. Regulating the activity of microRNPs in vertebrate cells. The FASEB Journal 2009, 23: 90.3-90.3. DOI: 10.1096/fasebj.23.1_supplement.90.3.Peer-Reviewed Original ResearchAU-rich sequencesPost-transcriptional controlAssociation of Ago2Role of microRNAsProtein FXR1Translation regulationContact-inhibited cellsVertebrate cellsTranslation upregulationTranslation activationTranslational efficiencyNegative regulatorCell cycleSpecific microRNAsQuiescent cellsS phaseH. saimiriEffector moleculesCell growthMicroRNPsXenopus oocytesMicroRNAsAgo2FXR1Monocyte differentiation