2012
Structural Basis for Differential Insertion Kinetics of dNMPs Opposite a Difluorotoluene Nucleotide Residue
Xia S, Eom SH, Konigsberg WH, Wang J. Structural Basis for Differential Insertion Kinetics of dNMPs Opposite a Difluorotoluene Nucleotide Residue. Biochemistry 2012, 51: 1476-1485. PMID: 22304682, PMCID: PMC3292180, DOI: 10.1021/bi2016487.Peer-Reviewed Original Research
2009
Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding
Sharma H, Yu S, Kong J, Wang J, Steitz TA. Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding. Proceedings Of The National Academy Of Sciences Of The United States Of America 2009, 106: 16604-16609. PMID: 19805344, PMCID: PMC2745332, DOI: 10.1073/pnas.0908380106.Peer-Reviewed Original ResearchConceptsColi catabolite gene activator proteinEscherichia coli catabolite gene activator proteinCatabolite gene activator proteinC-helixConformational changesGene activator proteinDNA binding domainsDNA recognition helixEarlier biochemical dataLarge conformational changesSpecific DNA sequencesBinding of cAMPRecognition helixActivator proteinDNA sequencesDNA bindingBinding domainsActive DNAWT structureInactive formInactive structureBiochemical dataDifferent conformationsBindingConformation
2005
Hydrodynamic Characterization of the DEAD-box RNA Helicase DbpA
Talavera MA, Matthews EE, Eliason WK, Sagi I, Wang J, Henn A, De La Cruz EM. Hydrodynamic Characterization of the DEAD-box RNA Helicase DbpA. Journal Of Molecular Biology 2005, 355: 697-707. PMID: 16325852, DOI: 10.1016/j.jmb.2005.10.058.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsChromatography, GelComputersCross-Linking ReagentsDEAD-box RNA HelicasesElectrophoretic Mobility Shift AssayEscherichia coliEscherichia coli ProteinsModels, BiologicalModels, MolecularProtein Structure, TertiaryRNARNA HelicasesRNA-Binding ProteinsStructural Homology, ProteinConceptsHelicase core domainNucleic acid helicasesCarboxyl-terminal domainAb initio structure prediction methodNucleic acid unwindingHelicase activityRNA metabolismHydrodynamic bead modelingDistinct RNARNA substratesHairpin 92ATP hydrolysisStructural homologyStructure prediction methodsCore domainOligomeric formsAnalytical ultracentrifugationDbpAProtein AMulti-angle laserBead modelingRNASize exclusion chromatographyKey roleFunctional propertiesRole of the GYVG Pore Motif of HslU ATPase in Protein Unfolding and Translocation for Degradation by HslV Peptidase*
Park E, Rho YM, Koh OJ, Ahn SW, Seong IS, Song JJ, Bang O, Seol JH, Wang J, Eom SH, Chung CH. Role of the GYVG Pore Motif of HslU ATPase in Protein Unfolding and Translocation for Degradation by HslV Peptidase*. Journal Of Biological Chemistry 2005, 280: 22892-22898. PMID: 15849200, DOI: 10.1074/jbc.m500035200.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino Acid MotifsAmino Acid SequenceCaseinsChromatographyCross-Linking ReagentsDose-Response Relationship, DrugElectrophoresis, Polyacrylamide GelEndopeptidase ClpEscherichia coliEscherichia coli ProteinsGlycineHydrolysisModels, BiologicalModels, MolecularMolecular Sequence DataMutagenesisMutagenesis, Site-DirectedMutationPeptidesProtein BindingProtein DenaturationProtein FoldingProtein TransportSequence Homology, Amino AcidTemperatureConceptsHslU ATPasePore motifHslVU complexHslV peptidaseCentral poreATP-dependent proteaseProtein unfoldingProteolytic active sitesHslU hexamerProteolytic chamberHslV dodecamerUnfolded proteinsHslV.HslUGly residueTranslocation processAmino acidsDegradation of caseinMotifProteinATP cleavageSame structural featuresATPase activityTranslocationATPase
2004
The structure of a ribosomal protein S8/spc operon mRNA complex
Merianos HJ, Wang J, Moore PB. The structure of a ribosomal protein S8/spc operon mRNA complex. RNA 2004, 10: 954-964. PMID: 15146079, PMCID: PMC1370587, DOI: 10.1261/rna.7030704.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBinding SitesCrystallography, X-RayEscherichia coliEscherichia coli ProteinsGenes, BacterialLigandsMacromolecular SubstancesModels, MolecularNucleic Acid ConformationOperonProtein BiosynthesisRibosomal ProteinsRNA, BacterialRNA, MessengerSpecies SpecificityStatic ElectricityConceptsSpc operon mRNAOperon mRNARibosomal protein cistronsSmall ribosomal subunitRibosomal initiation complexResolution crystal structureProtein synthesis resultsSpc operonAutogenous regulationTranslational repressionInitiation complexOwn mRNARibosomal subunitS8 bindingSequence differencesCistronInternal sequencesMRNAGenesConformational similarityBindingComplexesRetroregulationRRNAsOperon
2003
Domain Motions in GroEL upon Binding of an Oligopeptide
Wang J, Chen L. Domain Motions in GroEL upon Binding of an Oligopeptide. Journal Of Molecular Biology 2003, 334: 489-499. PMID: 14623189, DOI: 10.1016/j.jmb.2003.09.074.Peer-Reviewed Original Research
1999
New insights into the ATP‐dependent Clp protease: Escherichia coli and beyond
Porankiewicz J, Wang J, Clarke A. New insights into the ATP‐dependent Clp protease: Escherichia coli and beyond. Molecular Microbiology 1999, 32: 449-458. PMID: 10320569, DOI: 10.1046/j.1365-2958.1999.01357.x.Peer-Reviewed Original ResearchConceptsClp proteaseClpP proteinATP-dependent Clp proteaseClp/Hsp100Escherichia coliKey metabolic enzymesPrecise regulatory mechanismsChaperone subunitsPhotosynthetic organismsHigher plantsRegulatory subunitCellular processesHeptameric ringsHexameric ringThree-dimensional structureProteolytic subunitNew insightsRegulatory mechanismsProtein turnoverMetabolic enzymesFunctional importanceSubunitsProteaseRecent findingsProtein
1998
Crystal Structure Determination ofEscherichia coliClpP Starting from an EM-Derived Mask
Wang J, Hartling J, Flanagan J. Crystal Structure Determination ofEscherichia coliClpP Starting from an EM-Derived Mask. Journal Of Structural Biology 1998, 124: 151-163. PMID: 10049803, DOI: 10.1006/jsbi.1998.4058.Peer-Reviewed Original ResearchConceptsATP-dependent proteolytic complexEscherichia coli ClpPATP-dependent proteaseProteolytic active sitesEvolutionary convergenceClpP structureHeptameric ringsProteolytic complexIntracellular proteolysisProteolytic componentBiophysical techniquesClpPSmall-angle X-rayX-ray crystallographyX-ray crystal structureStriking exampleMatrix refinementActive siteProteaseStructure determinationHslVOverall architectureProteasomeStructural levelElectron microscopy
1997
The Structure of ClpP at 2.3 Å Resolution Suggests a Model for ATP-Dependent Proteolysis
Wang J, Hartling J, Flanagan J. The Structure of ClpP at 2.3 Å Resolution Suggests a Model for ATP-Dependent Proteolysis. Cell 1997, 91: 447-456. PMID: 9390554, DOI: 10.1016/s0092-8674(00)80431-6.Peer-Reviewed Original ResearchCrystal Structure of a pol α Family Replication DNA Polymerase from Bacteriophage RB69
Wang J, Sattar A, Wang C, Karam J, Konigsberg W, Steitz T. Crystal Structure of a pol α Family Replication DNA Polymerase from Bacteriophage RB69. Cell 1997, 89: 1087-1099. PMID: 9215631, DOI: 10.1016/s0092-8674(00)80296-2.Peer-Reviewed Original ResearchBacteriophagesBinding SitesConserved SequenceCrystallographyDNA Polymerase IDNA Polymerase IIDNA, Single-StrandedEscherichia coliExonucleasesGene Expression Regulation, ViralHIVProtein ConformationProtein Structure, SecondaryProtein Structure, TertiaryReplication OriginRNA-Directed DNA PolymeraseSequence Homology, Amino Acid
1992
Crystal Structure at 3.5 Å Resolution of HIV-1 Reverse Transcriptase Complexed with an Inhibitor
Kohlstaedt L, Wang J, Friedman J, Rice P, Steitz T. Crystal Structure at 3.5 Å Resolution of HIV-1 Reverse Transcriptase Complexed with an Inhibitor. Science 1992, 256: 1783-1790. PMID: 1377403, DOI: 10.1126/science.1377403.Peer-Reviewed Original Research