Determination of chemical identity and occupancy from experimental density maps
Wang J. Determination of chemical identity and occupancy from experimental density maps. Protein Science 2017, 27: 411-420. PMID: 29027293, PMCID: PMC5775170, DOI: 10.1002/pro.3325.Peer-Reviewed Original ResearchMeSH KeywordsCryoelectron MicroscopyCrystallography, X-RayFourier AnalysisMacromolecular SubstancesModels, MolecularPhotosystem II Protein ComplexProtein BindingProtein Conformation, alpha-HelicalStatic ElectricityConceptsCharge densityFourier transformElectrostatic potentialExperimental charge densitySolvent moleculesAtomic B-factorsElectron densityBasic electronic propertiesESP mapsProtein α-helixChemical identityActive siteElectronic propertiesLarge macromolecular complexesExperimental density mapsDensity mapsMoleculesVitreous iceMacromolecular complexesΑ-helixSmall protein subunitESP valuesTransformStructure factorSupercomplexesEffects of aligned α‐helix peptide dipoles on experimental electrostatic potentials
Wang J, Videla PE, Batista VS. Effects of aligned α‐helix peptide dipoles on experimental electrostatic potentials. Protein Science 2017, 26: 1692-1697. PMID: 28556371, PMCID: PMC5563131, DOI: 10.1002/pro.3204.Peer-Reviewed Original ResearchMeSH KeywordsCrystallography, X-RayMicroscopy, ElectronModels, MolecularPeptidesProtein Conformation, alpha-HelicalStatic ElectricityConceptsElectrostatic potentialEM mapsProtein αExperimental electrostatic potentialHelix dipoleDetailed molecular levelHigh-resolution electron microscopyDensity functional theory calculationsProtein functionStructural biologyFunctional theory calculationsElectron microscopyProtein α-helixPartial atomic chargesElectric fieldΑ-helixLong-range featuresMolecular levelNonlocal natureAtomic chargesTheory calculationsDipoleBackbone dipolesRecent breakthroughsProper calculation