2018
Structural and biochemical insights into inhibition of human primase by citrate
Lee JG, Park KR, An JY, Kang JY, Shen H, Wang J, Eom SH. Structural and biochemical insights into inhibition of human primase by citrate. Biochemical And Biophysical Research Communications 2018, 507: 383-388. PMID: 30446220, DOI: 10.1016/j.bbrc.2018.11.047.Peer-Reviewed Original ResearchMeSH KeywordsAnionsCalorimetryCatalytic DomainCitric AcidCrystallography, X-RayDNA PrimaseDNA PrimersEnzyme InhibitorsHumansNucleotidesConceptsDNA replicationSmall catalytic subunitShort RNA segmentReplicative DNA polymerasesPhosphate binding siteMammalian chromosomesReplication forksCatalytic subunitAccessory subunitsBiochemical insightsOkazaki fragmentsRNA primersKey regulatorRNA segmentsBacterial enzymesHuman primasePrimaseDNA templateBase pairsDNA polymeraseInactive formDNA strandsBinding sitesPolymeraseSubunits
2017
Crystal structure of Pistol, a class of self-cleaving ribozyme
Nguyen LA, Wang J, Steitz TA. Crystal structure of Pistol, a class of self-cleaving ribozyme. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: 1021-1026. PMID: 28096403, PMCID: PMC5293083, DOI: 10.1073/pnas.1611191114.Peer-Reviewed Original Research
2014
The mechanism of Torsin ATPase activation
Brown RS, Zhao C, Chase AR, Wang J, Schlieker C. The mechanism of Torsin ATPase activation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: e4822-e4831. PMID: 25352667, PMCID: PMC4234599, DOI: 10.1073/pnas.1415271111.Peer-Reviewed Original ResearchStructural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme
Eiler D, Wang J, Steitz TA. Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: 13028-13033. PMID: 25157168, PMCID: PMC4246988, DOI: 10.1073/pnas.1414571111.Peer-Reviewed Original ResearchExploiting large non‐isomorphous differences for phase determination of a G‐segment invertase–DNA complex
Ritacco CJ, Steitz TA, Wang J. Exploiting large non‐isomorphous differences for phase determination of a G‐segment invertase–DNA complex. Acta Crystallographica Section D, Structural Biology 2014, 70: 685-693. PMID: 24598738, PMCID: PMC3949525, DOI: 10.1107/s1399004713032392.Peer-Reviewed Original Research
2012
The Hexameric Helicase DnaB Adopts a Nonplanar Conformation during Translocation
Itsathitphaisarn O, Wing RA, Eliason WK, Wang J, Steitz TA. The Hexameric Helicase DnaB Adopts a Nonplanar Conformation during Translocation. Cell 2012, 151: 267-277. PMID: 23022319, PMCID: PMC3597440, DOI: 10.1016/j.cell.2012.09.014.Peer-Reviewed Original ResearchConceptsTranslocation mechanismParental duplex DNAReplicative DNA helicaseNucleotides of ssDNAC-terminal domainDNA helicaseDnaB hexamerHelicase DnaBNTP hydrolysisNascent DNAStructural insightsQuaternary structureDNA templateDuplex DNADNA polymeraseDnaBTranslocationSequential hydrolysisSubunitsUnwindingNucleotidesDNASsDNAHelicasesHelicaseStructural and mechanistic insights into guanylylation of RNA-splicing ligase RtcB joining RNA between 3′-terminal phosphate and 5′-OH
Englert M, Xia S, Okada C, Nakamura A, Tanavde V, Yao M, Eom SH, Konigsberg WH, Söll D, Wang J. Structural and mechanistic insights into guanylylation of RNA-splicing ligase RtcB joining RNA between 3′-terminal phosphate and 5′-OH. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 15235-15240. PMID: 22949672, PMCID: PMC3458315, DOI: 10.1073/pnas.1213795109.Peer-Reviewed Original ResearchConceptsRNA substratesRNA strandRNA phosphate backboneRNA endExtensive mutagenesisSecond RNA substrateKey residuesLigation pathwayBiochemical experimentsOverall ligationRNA ligaseGuanylylationRtcBMechanistic insightsGTP/Critical rolePhosphate backboneGMPActive siteCyclic phosphateDependent reactionDetailed insightStrandsLigaseMutagenesisStructural Basis for Differential Insertion Kinetics of dNMPs Opposite a Difluorotoluene Nucleotide Residue
Xia S, Eom SH, Konigsberg WH, Wang J. Structural Basis for Differential Insertion Kinetics of dNMPs Opposite a Difluorotoluene Nucleotide Residue. Biochemistry 2012, 51: 1476-1485. PMID: 22304682, PMCID: PMC3292180, DOI: 10.1021/bi2016487.Peer-Reviewed Original Research
2011
Variation in Mutation Rates Caused by RB69pol Fidelity Mutants Can Be Rationalized on the Basis of Their Kinetic Behavior and Crystal Structures
Xia S, Wang M, Lee HR, Sinha A, Blaha G, Christian T, Wang J, Konigsberg W. Variation in Mutation Rates Caused by RB69pol Fidelity Mutants Can Be Rationalized on the Basis of Their Kinetic Behavior and Crystal Structures. Journal Of Molecular Biology 2011, 406: 558-570. PMID: 21216248, PMCID: PMC3059800, DOI: 10.1016/j.jmb.2010.12.033.Peer-Reviewed Original ResearchConceptsDouble mutantMutation rateAmino acid residuesRB69 DNA polymeraseSingle mutantsMutable sequencesPocket mutantsMutantsAcid residuesState kinetic parametersPrimer extensionT4 phageFidelity mutantsNucleotide residuesIncoming dNTPsDNA polymeraseReversion assayTernary complexComplementary strandCrystal structureResiduesBase selectivityPocketPolymeraseMisincorporation
2010
Insights into Base Selectivity from the 1.8 Å Resolution Structure of an RB69 DNA Polymerase Ternary Complex
Wang M, Xia S, Blaha G, Steitz TA, Konigsberg WH, Wang J. Insights into Base Selectivity from the 1.8 Å Resolution Structure of an RB69 DNA Polymerase Ternary Complex. Biochemistry 2010, 50: 581-590. PMID: 21158418, PMCID: PMC3036992, DOI: 10.1021/bi101192f.Peer-Reviewed Original Research