2012
Probing Minor Groove Hydrogen Bonding Interactions between RB69 DNA Polymerase and DNA
Xia S, Christian TD, Wang J, Konigsberg WH. Probing Minor Groove Hydrogen Bonding Interactions between RB69 DNA Polymerase and DNA. Biochemistry 2012, 51: 4343-4353. PMID: 22571765, PMCID: PMC3374494, DOI: 10.1021/bi300416z.Peer-Reviewed Original Research
2010
Structural insight into the mechanisms of enveloped virus tethering by tetherin
Yang H, Wang J, Jia X, McNatt MW, Zang T, Pan B, Meng W, Wang HW, Bieniasz PD, Xiong Y. Structural insight into the mechanisms of enveloped virus tethering by tetherin. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 18428-18432. PMID: 20940320, PMCID: PMC2972963, DOI: 10.1073/pnas.1011485107.Peer-Reviewed Original ResearchAntigens, CDBase SequenceCell LineCrystallography, X-RayDimerizationDNA PrimersGPI-Linked ProteinsHIV-1HumansImmunity, InnateIn Vitro TechniquesModels, MolecularMolecular Dynamics SimulationMutagenesis, Site-DirectedMutant ProteinsProtein StabilityProtein Structure, QuaternaryProtein Structure, TertiaryRecombinant ProteinsStatic ElectricityVirus Release
2005
Role of the GYVG Pore Motif of HslU ATPase in Protein Unfolding and Translocation for Degradation by HslV Peptidase*
Park E, Rho YM, Koh OJ, Ahn SW, Seong IS, Song JJ, Bang O, Seol JH, Wang J, Eom SH, Chung CH. Role of the GYVG Pore Motif of HslU ATPase in Protein Unfolding and Translocation for Degradation by HslV Peptidase*. Journal Of Biological Chemistry 2005, 280: 22892-22898. PMID: 15849200, DOI: 10.1074/jbc.m500035200.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino Acid MotifsAmino Acid SequenceCaseinsChromatographyCross-Linking ReagentsDose-Response Relationship, DrugElectrophoresis, Polyacrylamide GelEndopeptidase ClpEscherichia coliEscherichia coli ProteinsGlycineHydrolysisModels, BiologicalModels, MolecularMolecular Sequence DataMutagenesisMutagenesis, Site-DirectedMutationPeptidesProtein BindingProtein DenaturationProtein FoldingProtein TransportSequence Homology, Amino AcidTemperatureConceptsHslU ATPasePore motifHslVU complexHslV peptidaseCentral poreATP-dependent proteaseProtein unfoldingProteolytic active sitesHslU hexamerProteolytic chamberHslV dodecamerUnfolded proteinsHslV.HslUGly residueTranslocation processAmino acidsDegradation of caseinMotifProteinATP cleavageSame structural featuresATPase activityTranslocationATPaseA specific subdomain in φ29 DNA polymerase confers both processivity and strand-displacement capacity
Rodríguez I, Lázaro JM, Blanco L, Kamtekar S, Berman AJ, Wang J, Steitz TA, Salas M, de Vega M. A specific subdomain in φ29 DNA polymerase confers both processivity and strand-displacement capacity. Proceedings Of The National Academy Of Sciences Of The United States Of America 2005, 102: 6407-6412. PMID: 15845765, PMCID: PMC1088371, DOI: 10.1073/pnas.0500597102.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBacteriophage T4DNADNA PrimersDNA ReplicationDNA-Directed DNA PolymeraseElectrophoretic Mobility Shift AssayExodeoxyribonucleasesModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedProtein ConformationProtein Structure, TertiarySequence AlignmentTemplates, GeneticConceptsDNA polymerasePhi29 DNA polymeraseProtein-primed DNA polymerasesStrand-displacement capacityMutant DNA polymerasesΦ29 DNA polymeraseRecent crystallographic studiesDNA binding capacityAsp-398Deletion mutantsStructural insightsSpecific insertionProcessivityPolymeraseStrand displacementFunctional roleAmino acidsPalm subdomainSpecific subdomainsBiochemical analysisDNA synthesisCritical roleRegion 2Crystallographic studiesIntrinsic capacity
2004
Pre-Steady-State Kinetics of RB69 DNA Polymerase and Its Exo Domain Mutants: Effect of pH and Thiophosphoryl Linkages on 3‘−5‘ Exonuclease Activity †
Wang C, Zakharova E, Li J, Joyce C, Wang J, Konigsberg W. Pre-Steady-State Kinetics of RB69 DNA Polymerase and Its Exo Domain Mutants: Effect of pH and Thiophosphoryl Linkages on 3‘−5‘ Exonuclease Activity †. Biochemistry 2004, 43: 3853-3861. PMID: 15049692, DOI: 10.1021/bi0302292.Peer-Reviewed Original ResearchMeSH KeywordsAlanineAmino Acid SubstitutionBacteriophage T4Base Pair MismatchDNA Polymerase IDNA-Directed DNA PolymeraseEnzyme ActivationExodeoxyribonucleasesGlutamineHydrogen-Ion ConcentrationKineticsMutagenesis, Site-DirectedPhosphatesPhosphorylationProtein Structure, TertiaryRNA EditingSubstrate SpecificityThionucleotidesT-PhagesViral ProteinsConceptsRate-determining stepDivalent metal ionsPH-activity profileB family replicative DNA polymerasesChemical stepMetal ionsSingle-turnover conditionsWild-type enzymeEffects of pHKlenow fragmentB-family DNA polymerasesFamily DNA polymerasesState kineticsDNA polymeraseThree-dimensional structureDomain mutantsExonuclease reactionExonuclease activityPhosphorothioate linkagesPhi29 DNA polymeraseElemental effectsReplicative DNA polymerasesRepair DNA polymerasesExo activityCatalysis
2002
The C-terminal Tails of HslU ATPase Act as a Molecular Switch for Activation of HslV Peptidase*
Seong IS, Kang MS, Choi MK, Lee JW, Koh OJ, Wang J, Eom SH, Chung CH. The C-terminal Tails of HslU ATPase Act as a Molecular Switch for Activation of HslV Peptidase*. Journal Of Biological Chemistry 2002, 277: 25976-25982. PMID: 12011053, DOI: 10.1074/jbc.m202793200.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphatasesAmino Acid SequenceAmino Acid SubstitutionATP-Dependent ProteasesBinding SitesElectrophoresis, Polyacrylamide GelEndopeptidasesEnzyme ActivationHeat-Shock ProteinsModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedProtein ConformationSerine EndopeptidasesStructure-Activity RelationshipConceptsC-terminal tailHslV peptidaseHslVU complexC-terminusHexameric ringMolecular switchATP-dependent proteaseC-terminal 10 residuesAmino acidsProteolytic active sitesDodecamer consistingHslU hexamerHslU ATPaseTail peptideAxial poreATPase actsPolypeptide substratesSubstrate entryS proteasomeHslUCentral poreTerminusHslVPeptidaseCritical role