2014
Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme
Eiler D, Wang J, Steitz TA. Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: 13028-13033. PMID: 25157168, PMCID: PMC4246988, DOI: 10.1073/pnas.1414571111.Peer-Reviewed Original ResearchStructural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix
Brown JA, Bulkley D, Wang J, Valenstein ML, Yario TA, Steitz TA, Steitz JA. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nature Structural & Molecular Biology 2014, 21: 633-640. PMID: 24952594, PMCID: PMC4096706, DOI: 10.1038/nsmb.2844.Peer-Reviewed Original Research
2012
Contribution of Partial Charge Interactions and Base Stacking to the Efficiency of Primer Extension at and beyond Abasic Sites in DNA
Xia S, Vashishtha A, Bulkley D, Eom SH, Wang J, Konigsberg WH. Contribution of Partial Charge Interactions and Base Stacking to the Efficiency of Primer Extension at and beyond Abasic Sites in DNA. Biochemistry 2012, 51: 4922-4931. PMID: 22630605, PMCID: PMC3426629, DOI: 10.1021/bi300296q.Peer-Reviewed Original ResearchProbing Minor Groove Hydrogen Bonding Interactions between RB69 DNA Polymerase and DNA
Xia S, Christian TD, Wang J, Konigsberg WH. Probing Minor Groove Hydrogen Bonding Interactions between RB69 DNA Polymerase and DNA. Biochemistry 2012, 51: 4343-4353. PMID: 22571765, PMCID: PMC3374494, DOI: 10.1021/bi300416z.Peer-Reviewed Original Research
2010
Structural insight into the mechanisms of enveloped virus tethering by tetherin
Yang H, Wang J, Jia X, McNatt MW, Zang T, Pan B, Meng W, Wang HW, Bieniasz PD, Xiong Y. Structural insight into the mechanisms of enveloped virus tethering by tetherin. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 18428-18432. PMID: 20940320, PMCID: PMC2972963, DOI: 10.1073/pnas.1011485107.Peer-Reviewed Original ResearchAntigens, CDBase SequenceCell LineCrystallography, X-RayDimerizationDNA PrimersGPI-Linked ProteinsHIV-1HumansImmunity, InnateIn Vitro TechniquesModels, MolecularMolecular Dynamics SimulationMutagenesis, Site-DirectedMutant ProteinsProtein StabilityProtein Structure, QuaternaryProtein Structure, TertiaryRecombinant ProteinsStatic ElectricityVirus Release
2009
Tertiary architecture of the Oceanobacillus iheyensis group II intron
Toor N, Keating KS, Fedorova O, Rajashankar K, Wang J, Pyle AM. Tertiary architecture of the Oceanobacillus iheyensis group II intron. RNA 2009, 16: 57-69. PMID: 19952115, PMCID: PMC2802037, DOI: 10.1261/rna.1844010.Peer-Reviewed Original ResearchConceptsGroup II intronsPotential evolutionary relationshipsGroup II intron structureGroup IIC intronIntron structureEvolutionary relationshipsEukaryotic spliceosomeInteraction networksRNA moleculesIntronsTertiary structural organizationGenetic studiesRibose zipperRNA foldingTertiary interactionsLarge ribozymesInteraction nodesStructural organizationTertiary architectureEukaryotesSpliceosomeGene therapyGenomeZipperFolding
2008
Mechanism of Inhibition of Human Immunodeficiency Virus Type 1 Reverse Transcriptase by a Stavudine Analogue, 4′-Ethynyl Stavudine Triphosphate
Yang G, Wang J, Cheng Y, Dutschman GE, Tanaka H, Baba M, Cheng YC. Mechanism of Inhibition of Human Immunodeficiency Virus Type 1 Reverse Transcriptase by a Stavudine Analogue, 4′-Ethynyl Stavudine Triphosphate. Antimicrobial Agents And Chemotherapy 2008, 52: 2035-2042. PMID: 18391035, PMCID: PMC2415781, DOI: 10.1128/aac.00083-08.Peer-Reviewed Original ResearchConceptsM184V mutantNucleoside reverse transcriptase inhibitorHuman immunodeficiency virus type 1Immunodeficiency virus type 1Human immunodeficiency virus type 1 reverse transcriptaseReverse transcriptase inhibitorType 1 reverse transcriptaseVirus type 1Mechanism of inhibitionHIV-1 RTWild-type RTStavudine triphosphateTranscriptase inhibitorD4TD4TTPType 1WT RTMutant RTsReverse transcriptase
2004
Crystal structure of a group I intron splicing intermediate
Adams PL, Stahley MR, Gill ML, Kosek AB, Wang J, Strobel SA. Crystal structure of a group I intron splicing intermediate. RNA 2004, 10: 1867-1887. PMID: 15547134, PMCID: PMC1370676, DOI: 10.1261/rna.7140504.Peer-Reviewed Original ResearchInsights into Strand Displacement and Processivity from the Crystal Structure of the Protein-Primed DNA Polymerase of Bacteriophage φ29
Kamtekar S, Berman AJ, Wang J, Lázaro JM, de Vega M, Blanco L, Salas M, Steitz TA. Insights into Strand Displacement and Processivity from the Crystal Structure of the Protein-Primed DNA Polymerase of Bacteriophage φ29. Molecular Cell 2004, 16: 609-618. PMID: 15546620, DOI: 10.1016/j.molcel.2004.10.019.Peer-Reviewed Original ResearchConceptsDNA polymerasePhi29 DNA polymeraseT7 RNA polymeraseB-family polymerasesSpecific serinePriming proteinPolymerase active sitePhage phi29RNA polymerasePhage genomeSpecificity loopNontemplate strandStrand displacement activityFirst nucleotideHomology modelingSequence insertionHigh processivityProtein primerB familyPolymeraseDuplex DNATemplate DNAProcessivityProteinDNACrystal structure of a self-splicing group I intron with both exons
Adams PL, Stahley MR, Kosek AB, Wang J, Strobel SA. Crystal structure of a self-splicing group I intron with both exons. Nature 2004, 430: 45-50. PMID: 15175762, DOI: 10.1038/nature02642.Peer-Reviewed Original ResearchThe structure of a ribosomal protein S8/spc operon mRNA complex
Merianos HJ, Wang J, Moore PB. The structure of a ribosomal protein S8/spc operon mRNA complex. RNA 2004, 10: 954-964. PMID: 15146079, PMCID: PMC1370587, DOI: 10.1261/rna.7030704.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBinding SitesCrystallography, X-RayEscherichia coliEscherichia coli ProteinsGenes, BacterialLigandsMacromolecular SubstancesModels, MolecularNucleic Acid ConformationOperonProtein BiosynthesisRibosomal ProteinsRNA, BacterialRNA, MessengerSpecies SpecificityStatic ElectricityConceptsSpc operon mRNAOperon mRNARibosomal protein cistronsSmall ribosomal subunitRibosomal initiation complexResolution crystal structureProtein synthesis resultsSpc operonAutogenous regulationTranslational repressionInitiation complexOwn mRNARibosomal subunitS8 bindingSequence differencesCistronInternal sequencesMRNAGenesConformational similarityBindingComplexesRetroregulationRRNAsOperon
2003
Crystal structure of a transcription factor IIIB core interface ternary complex
Juo ZS, Kassavetis GA, Wang J, Geiduschek EP, Sigler PB. Crystal structure of a transcription factor IIIB core interface ternary complex. Nature 2003, 422: 534-539. PMID: 12660736, DOI: 10.1038/nature01534.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceBinding SitesCrystallography, X-RayDNA, FungalFungal ProteinsGenes, FungalHydrogen BondingMacromolecular SubstancesModels, MolecularMolecular Sequence DataNucleic Acid ConformationPromoter Regions, GeneticProtein Structure, TertiaryProtein SubunitsRNA, Small NuclearSaccharomyces cerevisiae ProteinsStatic ElectricitySubstrate SpecificityTATA-Box Binding ProteinTranscription Factor TFIIIBConceptsTranscription factor IIIBGeneral transcription factor TFIIBDomain IIÅ resolution crystal structureTranscription factor TFIIBOpen initiation complexRegion of TBPTFIIB-related factorAmino-terminal halfCarboxy-terminal halfTernary complexResolution crystal structureRegulated transcriptionPromoter DNASequence similarityInitiation complexRNA polymeraseBase pairsBdp1Brf1Essential rolePolymerasePrimary interfaceCrystal structureResidue 435