2017
PKN1 Directs Polarized RAB21 Vesicle Trafficking via RPH3A and Is Important for Neutrophil Adhesion and Ischemia-Reperfusion Injury
Yuan Q, Ren C, Xu W, Petri B, Zhang J, Zhang Y, Kubes P, Wu D, Tang W. PKN1 Directs Polarized RAB21 Vesicle Trafficking via RPH3A and Is Important for Neutrophil Adhesion and Ischemia-Reperfusion Injury. Cell Reports 2017, 19: 2586-2597. PMID: 28636945, PMCID: PMC5548392, DOI: 10.1016/j.celrep.2017.05.080.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsCell AdhesionCell PolarityFemaleKidneyMaleMice, Inbred C57BLMice, TransgenicNerve Tissue ProteinsNeutrophilsPhosphorylationPhosphotransferases (Alcohol Group Acceptor)Protein Kinase CProtein Processing, Post-TranslationalProtein TransportRab GTP-Binding ProteinsReperfusion InjuryTransendothelial and Transepithelial MigrationTransport VesiclesVesicular Transport ProteinsConceptsTissue injuryNeutrophil adhesionRenal ischemia-reperfusion modelEndothelial cellsDecrease tissue injuryMyeloid-specific lossIschemia-reperfusion injuryIschemia-reperfusion modelInnate immune responseNeutrophil integrin activationInflammatory modelInflammatory responseImmune responseTherapeutic interventionsInjuryNeutrophilsRPH3AIntegrin activationCellsFGF-dependent metabolic control of vascular development
Yu P, Wilhelm K, Dubrac A, Tung JK, Alves TC, Fang JS, Xie Y, Zhu J, Chen Z, De Smet F, Zhang J, Jin SW, Sun L, Sun H, Kibbey RG, Hirschi KK, Hay N, Carmeliet P, Chittenden TW, Eichmann A, Potente M, Simons M. FGF-dependent metabolic control of vascular development. Nature 2017, 545: 224-228. PMID: 28467822, PMCID: PMC5427179, DOI: 10.1038/nature22322.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell MovementCell ProliferationEndothelial CellsFemaleFibroblast Growth FactorsGlycolysisHexokinaseLymphangiogenesisLymphatic VesselsMiceMice, Inbred C57BLNeovascularization, PhysiologicProto-Oncogene Proteins c-mycReceptor, Fibroblast Growth Factor, Type 1Receptor, Fibroblast Growth Factor, Type 3Signal Transduction
2016
The neuropilin-like protein ESDN regulates insulin signaling and sensitivity
Li X, Jung JJ, Nie L, Razavian M, Zhang J, Samuel V, Sadeghi MM. The neuropilin-like protein ESDN regulates insulin signaling and sensitivity. AJP Heart And Circulatory Physiology 2016, 310: h1184-h1193. PMID: 26921437, PMCID: PMC4867389, DOI: 10.1152/ajpheart.00782.2015.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsAntigens, CDAorta, ThoracicCell MovementCell ProliferationCells, CulturedDose-Response Relationship, DrugEnzyme ActivationFemaleGenotypeGRB10 Adaptor ProteinInsulinInsulin ResistanceMaleMice, Inbred C57BLMice, KnockoutMitogen-Activated Protein KinasesMuscle, Smooth, VascularMyocytes, Smooth MuscleNeuropilinsPhenotypePhosphorylationProto-Oncogene Proteins c-aktReceptor, InsulinSignal TransductionTime FactorsUbiquitinationConceptsSignal transductionNovel regulatorSmooth muscle cell-derived neuropilin-like proteinInsulin receptorInsulin receptor signal transductionMitogen-activated protein kinase activationSrc homology 2Novel regulatory mechanismReceptor signal transductionProtein kinase BInsulin signal transductionProtein kinase activationInsulin receptor phosphorylationPleckstrin homologyHomology 2Adaptor proteinTransmembrane proteinGrowth factor receptorKinase activationVascular smooth muscle cell proliferationRegulatory mechanismsKinase BInsulin signalingReceptor phosphorylationNovel therapeutic avenues
2015
Interferon-&ggr;–Mediated Allograft Rejection Exacerbates Cardiovascular Disease of Hyperlipidemic Murine Transplant Recipients
Zhou J, Qin L, Yi T, Ali R, Li Q, Jiao Y, Li G, Tobiasova Z, Huang Y, Zhang J, Yun JJ, Sadeghi MM, Giordano FJ, Pober JS, Tellides G. Interferon-&ggr;–Mediated Allograft Rejection Exacerbates Cardiovascular Disease of Hyperlipidemic Murine Transplant Recipients. Circulation Research 2015, 117: 943-955. PMID: 26399469, PMCID: PMC4636943, DOI: 10.1161/circresaha.115.306932.Peer-Reviewed Original ResearchMeSH KeywordsAllograftsAnimalsAortic DiseasesApolipoproteins EAtherosclerosisCardiomyopathiesCardiovascular DiseasesDisease Models, AnimalFemaleGraft RejectionHeart TransplantationHemodynamicsHistocompatibility Antigens Class IIHyperlipidemiasInflammation MediatorsInterferon-gammaLymphocyte ActivationMaleMice, Inbred BALB CMice, Inbred C57BLMice, KnockoutSignal TransductionTh1 CellsVentricular Dysfunction, LeftVentricular Function, LeftConceptsOrgan transplant recipientsCardiovascular diseaseTransplant recipientsEarly-onset cardiovascular diseaseEnd-stage organ failureNative coronary arteriesTh1-type cytokinesT helper cellsHost diseaseAlloimmune responseGraft rejectionAortic stiffeningOrgan failureVentricular dilatationAllogeneic graftsCardiovascular dysfunctionCoronary arteryAortic complianceRisk factorsEffective therapyCardiac contractilityMurine modelAnimal modelsSerological neutralizationImmune system
2014
The vestigial enzyme D-dopachrome tautomerase protects the heart against ischemic injury
Qi D, Atsina K, Qu L, Hu X, Wu X, Xu B, Piecychna M, Leng L, Fingerle-Rowson G, Zhang J, Bucala R, Young LH. The vestigial enzyme D-dopachrome tautomerase protects the heart against ischemic injury. Journal Of Clinical Investigation 2014, 124: 3540-3550. PMID: 24983315, PMCID: PMC4109524, DOI: 10.1172/jci73061.Peer-Reviewed Original ResearchConceptsMacrophage migration inhibitory factorContractile dysfunctionAntibody-dependent neutralizationAutocrine/paracrine effectsCoronary artery ligationCardiac contractile dysfunctionMigration inhibitory factorLV contractile dysfunctionDopachrome tautomeraseMolecular signaling pathwaysArtery ligationIschemic injuryCardiac sizeCardiomyocyte secretionControl heartsProtective effectKnockout miceParacrine effectsIschemic stressPhysiologic responsesInhibitory factorMore necrosisDysfunctionInjuryMurine cardiomyocytesPTP1b Is a Physiologic Regulator of Vascular Endothelial Growth Factor Signaling in Endothelial Cells
Lanahan AA, Lech D, Dubrac A, Zhang J, Zhuang ZW, Eichmann A, Simons M. PTP1b Is a Physiologic Regulator of Vascular Endothelial Growth Factor Signaling in Endothelial Cells. Circulation 2014, 130: 902-909. PMID: 24982127, PMCID: PMC6060619, DOI: 10.1161/circulationaha.114.009683.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortaCell MovementCell ProliferationDisease Models, AnimalEndothelial CellsFemaleHindlimbHuman Umbilical Vein Endothelial CellsIschemiaMaleMiceMice, Mutant StrainsNeovascularization, PhysiologicPrimary Cell CultureProtein Tyrosine Phosphatase, Non-Receptor Type 1RNA, Small InterferingSignal TransductionVascular Endothelial Growth Factor AVascular Endothelial Growth Factor Receptor-2ConceptsPhosphotyrosine phosphatase 1BVascular endothelial growth factor receptor 2 signalingExtracellular signal-regulated kinaseGrowth factor signalingVEGF-dependent activationSignal-regulated kinaseNull miceVascular endothelial growth factor signalingRegulation of angiogenesisEndothelial traffickingEndothelial-specific deletionFactor signalingEndothelial VEGFR2Phosphatase 1BEndothelial cellsKey regulatorReceptor 2 signalingVEGFR2 signalingSignalingImportant roleEndothelial knockoutPhysiologic regulatorHindlimb ischemia mouse modelRegulationImpaired blood flow recoveryNetrin-1 controls sympathetic arterial innervation
Brunet I, Gordon E, Han J, Cristofaro B, Broqueres-You D, Liu C, Bouvrée K, Zhang J, del Toro R, Mathivet T, Larrivée B, Jagu J, Pibouin-Fragner L, Pardanaud L, Machado MJ, Kennedy TE, Zhuang Z, Simons M, Levy BI, Tessier-Lavigne M, Grenz A, Eltzschig H, Eichmann A. Netrin-1 controls sympathetic arterial innervation. Journal Of Clinical Investigation 2014, 124: 3230-3240. PMID: 24937433, PMCID: PMC4071369, DOI: 10.1172/jci75181.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornDCC ReceptorFemaleGrowth ConesMaleMesenteric ArteriesMiceMice, KnockoutMice, Mutant StrainsMice, TransgenicModels, NeurologicalMyocytes, Smooth MuscleNerve Growth FactorsNetrin-1PregnancyReceptors, Cell SurfaceSympathetic Nervous SystemTumor Suppressor ProteinsVasoconstrictionConceptsSmooth muscle cellsArterial innervationNetrin-1Resistance arteriesAutonomic sympathetic nervesArterial smooth muscle cellsPeripheral resistance arteriesBlood flow regulationOnset of innervationBlood flow controlCell type-specific deletionAxon guidance cue netrin-1Guidance cue netrin-1Sympathetic nervesSympathetic innervationVascular toneColorectal cancerPeripheral organsSympathetic neuronsBlood supplyInnervationMuscle cellsSympathetic growth conesArteryGrowth cones
2013
Lipid lowering and imaging protease activation in atherosclerosis
Razavian M, Nie L, Challa A, Zhang J, Golestani R, Jung JJ, Robinson S, Sadeghi MM. Lipid lowering and imaging protease activation in atherosclerosis. Journal Of Nuclear Cardiology 2013, 21: 319-328. PMID: 24368425, PMCID: PMC3991560, DOI: 10.1007/s12350-013-9843-7.Peer-Reviewed Original ResearchConceptsHigh-fat dietLipid-lowering interventionsHFD groupPlaque inflammationAtherosclerotic miceMicroSPECT/CT imagingTotal blood cholesterolModern therapeutic approachesSmooth muscle αMMP tracerFat dietBlood cholesterolPlaque biologyTherapeutic approachesTracer uptakeMatrix metalloproteinaseTherapeutic interventionsAtherosclerosisActin expressionCT imagingMuscle αWeeksFenofibrateMiceIntervention
2012
Molecular Imaging of Vascular Endothelial Growth Factor Receptors in Graft Arteriosclerosis
Zhang J, Razavian M, Tavakoli S, Nie L, Tellides G, Backer JM, Backer MV, Bender JR, Sadeghi MM. Molecular Imaging of Vascular Endothelial Growth Factor Receptors in Graft Arteriosclerosis. Arteriosclerosis Thrombosis And Vascular Biology 2012, 32: 1849-1855. PMID: 22723442, PMCID: PMC3401339, DOI: 10.1161/atvbaha.112.252510.Peer-Reviewed Original ResearchConceptsGraft arteriosclerosisArtery graftVascular remodelingAllogeneic human peripheral blood mononuclear cellsHuman coronary artery segmentsHuman peripheral blood mononuclear cellsPeripheral blood mononuclear cellsSevere combined immunodeficiency miceVEGF receptorsVascular endothelial growth factor receptorLate organ failureHuman coronary artery graftsSolid organ transplantationCoronary artery graftsEndothelial growth factor receptorBlood mononuclear cellsCoronary artery segmentsCombined immunodeficiency miceReceptor 2 expressionVEGF receptor-2 expressionMolecular imagingSignificant neointima formationVascular endothelial growth factor signalingVEGF receptor 1Growth factor receptor
2008
Molecular Imaging of Activated Matrix Metalloproteinases in Vascular Remodeling
Zhang J, Nie L, Razavian M, Ahmed M, Dobrucki LW, Asadi A, Edwards DS, Azure M, Sinusas AJ, Sadeghi MM. Molecular Imaging of Activated Matrix Metalloproteinases in Vascular Remodeling. Circulation 2008, 118: 1953-1960. PMID: 18936327, PMCID: PMC2637824, DOI: 10.1161/circulationaha.108.789743.Peer-Reviewed Original ResearchMeSH KeywordsAngioplasty, BalloonAnimalsApolipoproteins EAutoradiographyCarotid Artery InjuriesCarotid Artery, CommonDisease Models, AnimalFemaleFluorescent Antibody TechniqueIndiumMatrix Metalloproteinase 2Matrix Metalloproteinase 9MiceMice, Mutant StrainsSensitivity and SpecificityTomography, Emission-Computed, Single-PhotonConceptsVascular remodelingCarotid arteryCommon carotid artery injuryInjury-induced vascular remodelingCarotid wire injuryCarotid artery injuryMicroSPECT/CTMatrix metalloproteinase activationVessel wall areaArtery injuryCarotid injurySham surgerySignificant hyperplasiaContralateral arteryWire injuryFocal uptakeHyperplastic processesMicroSPECT imagingQuantitative autoradiographyTracer uptakeMetalloproteinase activationMMP activityArteryInjuryMatrix metalloproteinases