2021
Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity
Griffin GK, Wu J, Iracheta-Vellve A, Patti JC, Hsu J, Davis T, Dele-Oni D, Du PP, Halawi AG, Ishizuka JJ, Kim SY, Klaeger S, Knudsen NH, Miller BC, Nguyen TH, Olander KE, Papanastasiou M, Rachimi S, Robitschek EJ, Schneider EM, Yeary MD, Zimmer MD, Jaffe JD, Carr SA, Doench JG, Haining WN, Yates KB, Manguso RT, Bernstein BE. Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity. Nature 2021, 595: 309-314. PMID: 33953401, PMCID: PMC9166167, DOI: 10.1038/s41586-021-03520-4.Peer-Reviewed Original ResearchConceptsImmune checkpoint blockadeCheckpoint blockadeCytotoxic T cell responsesT cell responsesMouse tumor modelsImmune exclusionImmune clustersRetroviral antigensImmune sensitivityImmunostimulatory genesIntrinsic immunogenicityCell responsesTumor modelCentral mechanismsHuman tumorsCancer cellsBlockadeCandidate targetsImmunogenicitySpatial signatures identify immune escape via PD-1 as a defining feature of T-cell/histiocyte-rich large B-cell lymphoma
Griffin GK, Weirather JL, Roemer MGM, Lipschitz M, Kelley A, Chen PH, Gusenleitner D, Jeter E, Pak C, Gjini E, Chapuy B, Rosenthal MH, Xu J, Chen BJ, Sohani AR, Lovitch SB, Abramson JS, Ishizuka J, Kim AI, Jacobson CA, LaCasce AS, Fletcher CD, Neuberg D, Freeman GJ, Hodi FS, Wright K, Ligon AH, Jacobsen ED, Armand P, Shipp MA, Rodig SJ. Spatial signatures identify immune escape via PD-1 as a defining feature of T-cell/histiocyte-rich large B-cell lymphoma. Blood 2021, 137: 1353-1364. PMID: 32871584, PMCID: PMC8555417, DOI: 10.1182/blood.2020006464.Peer-Reviewed Original ResearchMeSH KeywordsB7-H1 AntigenHistiocytesHumansLymphoma, Large B-Cell, DiffuseProgrammed Cell Death 1 ReceptorT-LymphocytesTumor EscapeConceptsT-cell/histiocyte-rich large B-cell lymphomaLarge B-cell lymphomaB-cell lymphomaMalignant B cellsDiffuse large B-cell lymphomaClassic Hodgkin lymphomaPD-1B cellsImmune signaturesImmune escapePD-1/PD-L1 pathwayPD-L1/PDImmune escape pathwayPD-1 blockadeImmune cell infiltratesPD-L1 expressionRefractory hematologic malignanciesPD-L1 pathwayMulti-institutional cohortClinical responsePartial responseCell infiltrateComplete responsePD-L1Aggressive variant
2020
Vitamin D intake is associated with decreased risk of immune checkpoint inhibitor‐induced colitis
Grover S, Dougan M, Tyan K, Giobbie‐Hurder A, Blum SM, Ishizuka J, Qazi T, Elias R, Vora KB, Ruan AB, Martin‐Doyle W, Manos M, Eastman L, Davis M, Gargano M, Haq R, Buchbinder EI, Sullivan RJ, Ott PA, Hodi FS, Rahma OE. Vitamin D intake is associated with decreased risk of immune checkpoint inhibitor‐induced colitis. Cancer 2020, 126: 3758-3767. PMID: 32567084, PMCID: PMC7381363, DOI: 10.1002/cncr.32966.Peer-Reviewed Original ResearchMeSH KeywordsAgedAntibodies, MonoclonalAntineoplastic Agents, ImmunologicalColitisCTLA-4 AntigenFemaleHumansImmune Checkpoint InhibitorsLymphocytesMaleMelanomaMiddle AgedNeutrophilsProgrammed Cell Death 1 ReceptorVitamin DConceptsImmune checkpoint inhibitorsVitamin D useVitamin D intakeICI colitisD intakeD useDiscovery cohortDevelopment of ICIsImmune checkpoint inhibitor-induced colitisCheckpoint inhibitor-induced colitisCombination immune checkpoint inhibitorsMultivariable logistic regression analysisDana-Farber Cancer InstituteRisk of colitisMultivariable regression analysisLogistic regression analysisMassachusetts General HospitalRegression analysisCheckpoint inhibitorsLaboratory characteristicsPD-1Ulcerative colitisLymphocyte ratioMelanoma patientsVitamin D
2019
Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade
Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, Yates KB, Lako A, Felt K, Naik GS, Manos M, Gjini E, Kuchroo JR, Ishizuka JJ, Collier JL, Griffin GK, Maleri S, Comstock DE, Weiss SA, Brown FD, Panda A, Zimmer MD, Manguso RT, Hodi FS, Rodig SJ, Sharpe AH, Haining WN. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nature Immunology 2019, 20: 326-336. PMID: 30778252, PMCID: PMC6673650, DOI: 10.1038/s41590-019-0312-6.Peer-Reviewed Original ResearchConceptsTumor-infiltrating lymphocytesExhausted tumor-infiltrating lymphocytesT cell dysfunctionExhausted CD8T cellsCheckpoint blockadeCell dysfunctionAnti-PD-1 therapyInhibitory receptor PD-1Chronic viral infectionsExhausted T cellsReceptor PD-1Checkpoint blockade therapyDysfunctional CD8PD-1Antibody blockadeTumor controlSuch therapyCD8Viral infectionTumor growthExhausted cellsSpecific subpopulationsBlockadeTherapy
2018
Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade
Ishizuka JJ, Manguso RT, Cheruiyot CK, Bi K, Panda A, Iracheta-Vellve A, Miller BC, Du PP, Yates KB, Dubrot J, Buchumenski I, Comstock DE, Brown FD, Ayer A, Kohnle IC, Pope HW, Zimmer MD, Sen DR, Lane-Reticker SK, Robitschek EJ, Griffin GK, Collins NB, Long AH, Doench JG, Kozono D, Levanon EY, Haining WN. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 2018, 565: 43-48. PMID: 30559380, PMCID: PMC7241251, DOI: 10.1038/s41586-018-0768-9.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine DeaminaseAnimalsCell Cycle CheckpointsCell Line, TumorCRISPR-Cas SystemsDrug Resistance, NeoplasmFemaleHistocompatibility Antigens Class IImmunotherapyInflammationInterferon-Induced Helicase, IFIH1InterferonsMelanoma, ExperimentalMiceMice, Inbred C57BLPhenotypeProgrammed Cell Death 1 ReceptorReceptors, G-Protein-CoupledRNA EditingRNA, Double-StrandedRNA-Binding ProteinsConceptsImmune checkpoint blockadeCheckpoint blockadeAntigen presentationEffective anti-tumor immunityPD-1 checkpoint blockadeTumor cellsAnti-tumor immunityT cell recognitionSufficient inflammationImmunotherapy resistanceInhibitory checkpointsMost patientsInnate ligandsLoss of functionBlockadeTherapeutic requirementsLoss of ADAR1TumorsCancer cellsCell recognitionInflammationGrowth inhibitionADAR1PresentationCells