2021
Neuroinvasion of SARS-CoV-2 in human and mouse brain
Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, Lu P, Weizman OE, Liu F, Dai Y, Szigeti-Buck K, Yasumoto Y, Wang G, Castaldi C, Heltke J, Ng E, Wheeler J, Alfajaro MM, Levavasseur E, Fontes B, Ravindra NG, Van Dijk D, Mane S, Gunel M, Ring A, Kazmi SAJ, Zhang K, Wilen CB, Horvath TL, Plu I, Haik S, Thomas JL, Louvi A, Farhadian SF, Huttner A, Seilhean D, Renier N, Bilguvar K, Iwasaki A. Neuroinvasion of SARS-CoV-2 in human and mouse brain. Journal Of Experimental Medicine 2021, 218: e20202135. PMID: 33433624, PMCID: PMC7808299, DOI: 10.1084/jem.20202135.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Central nervous systemSARS-CoV-2 neuroinvasionImmune cell infiltratesCOVID-19 patientsType I interferon responseMultiple organ systemsCOVID-19I interferon responseHuman brain organoidsNeuroinvasive capacityCNS infectionsCell infiltrateNeuronal infectionPathological featuresCortical neuronsRespiratory diseaseDirect infectionCerebrospinal fluidNervous systemMouse brainInterferon responseOrgan systemsHuman ACE2Infection
2020
VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours
Song E, Mao T, Dong H, Boisserand LSB, Antila S, Bosenberg M, Alitalo K, Thomas JL, Iwasaki A. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 2020, 577: 689-694. PMID: 31942068, PMCID: PMC7100608, DOI: 10.1038/s41586-019-1912-x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrain NeoplasmsCD8-Positive T-LymphocytesCell Cycle CheckpointsCell Line, TumorCell MovementCentral Nervous SystemCross-PrimingFemaleGlioblastomaHEK293 CellsHumansImmunologic MemoryImmunologic SurveillanceLymph NodesLymphangiogenesisLymphatic VesselsMaleMelanomaMeningesMiceMice, Inbred C57BLProgrammed Cell Death 1 ReceptorVascular Endothelial Growth Factor CConceptsCD8 T cellsCentral nervous systemT cellsImmune responseBrain tumorsImmune surveillanceLymphatic drainageNervous systemAntigen-specific immune responsesDeep cervical lymph nodesCapacity of VEGFCervical lymph nodesCheckpoint blockade therapyMeningeal lymphatic systemVascular endothelial growth factor CNew therapeutic approachesUncontrolled tumor growthMeningeal lymphatic vasculatureBlockade therapyLymph nodesTherapeutic approachesMouse modelTumor growthMemory responsesTumors
2019
RNA Profiling of the Human and Mouse Spinal Cord Stem Cell Niches Reveals an Embryonic-like Regionalization with MSX1+ Roof-Plate-Derived Cells
Ghazale H, Ripoll C, Leventoux N, Jacob L, Azar S, Mamaeva D, Glasson Y, Calvo CF, Thomas JL, Meneceur S, Lallemand Y, Rigau V, Perrin FE, Noristani HN, Rocamonde B, Huillard E, Bauchet L, Hugnot JP. RNA Profiling of the Human and Mouse Spinal Cord Stem Cell Niches Reveals an Embryonic-like Regionalization with MSX1+ Roof-Plate-Derived Cells. Stem Cell Reports 2019, 12: 1159-1177. PMID: 31031189, PMCID: PMC6524006, DOI: 10.1016/j.stemcr.2019.04.001.Peer-Reviewed Original ResearchConceptsTranscription factorsRNA profilingDevelopmental transcription factorsDorsal-ventral patternStem cell nicheEpendymal zoneMolecular resourcesMammalian lesionsConserved expressionCell nicheNeural stem cellsCell diversityPossible endogenous sourceQuiescent cellsGenesFloor plateStem cellsMsx1Endogenous sourcesTransgenic miceCellsProfilingSpinal cordCentral canalExpression
2017
The Xenopus tadpole: An in vivo model to screen drugs favoring remyelination
Mannioui A, Vauzanges Q, Fini JB, Henriet E, Sekizar S, Azoyan L, Thomas JL, Du Pasquier D, Giovannangeli C, Demeneix B, Lubetzki C, Zalc B. The Xenopus tadpole: An in vivo model to screen drugs favoring remyelination. Multiple Sclerosis Journal 2017, 24: 1421-1432. PMID: 28752787, DOI: 10.1177/1352458517721355.Peer-Reviewed Original ResearchConceptsSphingosine-1-phosphate receptor 5Receptor 5Sphingosine-1-phosphate receptor 1Efficacy of siponimodNumber of oligodendrocytesSpontaneous remyelinationMultiple sclerosisOptic nervePromyelinating effectE. coli nitroreductaseRemyelinationDual agonistsVivo modelReceptor 1SiponimodConditional ablationOligodendrocytesXenopus tadpolesVivo screeningCRISPR/Cas9 gene editingVivoCas9 gene editingDemyelinationSclerosisGreen fluorescent protein reporter
2016
Increased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging
Han L, Kong DK, Zheng MQ, Murikinati S, Ma C, Yuan P, Li L, Tian D, Cai Q, Ye C, Holden D, Park JH, Gao X, Thomas JL, Grutzendler J, Carson RE, Huang Y, Piepmeier JM, Zhou J. Increased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging. ACS Nano 2016, 10: 4209-4218. PMID: 26967254, PMCID: PMC5257033, DOI: 10.1021/acsnano.5b07573.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsBiological TransportBlood-Brain BarrierBrain NeoplasmsCell Line, TumorDecanoic AcidsDrug Delivery SystemsEthanolaminesFemaleGenetic TherapyHeterograftsHumansMatrix Metalloproteinase 2MiceMice, Inbred C57BLNanoparticlesOptical ImagingPaclitaxelPermeabilityPolymersPurinesPyrazolesScorpion VenomsTranscytosisTumor MicroenvironmentConceptsBlood-brain barrierLow delivery efficiencyTransport of nanoparticlesCancer gene therapyNanoparticle deliveryMore nanoparticlesBrain tumorsNanoparticlesDelivery efficiencyGene therapySystemic deliveryNPsBrain malignanciesBBB modulatorsPharmacological agentsBrain cancerBrain regionsTumorsDeliveryBrainImproved treatmentInadequate amountsPositive feedback loopChemotherapyMalignancy
2014
Neural-Specific Deletion of Htra2 Causes Cerebellar Neurodegeneration and Defective Processing of Mitochondrial OPA1
Patterson VL, Zullo AJ, Koenig C, Stoessel S, Jo H, Liu X, Han J, Choi M, DeWan AT, Thomas JL, Kuan CY, Hoh J. Neural-Specific Deletion of Htra2 Causes Cerebellar Neurodegeneration and Defective Processing of Mitochondrial OPA1. PLOS ONE 2014, 9: e115789. PMID: 25531304, PMCID: PMC4274161, DOI: 10.1371/journal.pone.0115789.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBehavior, AnimalBlotting, WesternCell ProliferationCerebellumFemaleGTP PhosphohydrolasesHigh-Temperature Requirement A Serine Peptidase 2MaleMiceMice, Inbred C57BLMice, KnockoutMitochondriaMitochondrial ProteinsNerve DegenerationNeuronsParkinson DiseaseReal-Time Polymerase Chain ReactionReverse Transcriptase Polymerase Chain ReactionRNA, MessengerSequence DeletionSerine EndopeptidasesSignal TransductionConceptsNeural-specific deletionStriatal neuronal lossPostnatal day 18Days of ageNeuronal lossNeurological symptomsParkinson's diseaseMouse modelParkinsonian phenotypeSystemic effectsMitochondrial Opa1Day 18Premature deathMutant miceNeural contributionsMiceCerebellar neurodegenerationKey moleculesStructural anomaliesAbnormal activityAbnormal morphologyCerebellumDiseaseComplete penetranceDeath
2013
Ascl1/Mash1 Promotes Brain Oligodendrogenesis during Myelination and Remyelination
Nakatani H, Martin E, Hassani H, Clavairoly A, Maire CL, Viadieu A, Kerninon C, Delmasure A, Frah M, Weber M, Nakafuku M, Zalc B, Thomas JL, Guillemot F, Nait-Oumesmar B, Parras C. Ascl1/Mash1 Promotes Brain Oligodendrogenesis during Myelination and Remyelination. Journal Of Neuroscience 2013, 33: 9752-9768. PMID: 23739972, PMCID: PMC3892435, DOI: 10.1523/jneurosci.0805-13.2013.Peer-Reviewed Original ResearchConceptsOligodendrocyte precursor cellsNeonatal periodCortical oligodendrocyte precursor cellsOligodendrocyte developmentCortical subventricular zoneSubventricular zone progenitorsMultiple sclerosis lesionsMyelin-forming cellsPostnatal cortexRemyelination processFocal demyelinationCorpus callosumSubventricular zoneOPC differentiationPostnatal brainMouse modelAscl1 functionOligodendrogenesisOPC developmentSclerosis lesionsASCL1 expressionCortical progenitorsRemyelinationProneural transcription factorsOligodendrocytes
2010
Nitric Oxide Plays a Key Role in Myelination in the Developing Brain
Olivier P, Loron G, Fontaine R, Pansiot J, Dalous J, Thi H, Charriaut-Marlangue C, Thomas J, Mercier J, Gressens P, Baud O. Nitric Oxide Plays a Key Role in Myelination in the Developing Brain. Journal Of Neuropathology & Experimental Neurology 2010, 69: 828-837. PMID: 20613635, DOI: 10.1097/nen.0b013e3181ea5203.Peer-Reviewed Original ResearchMeSH KeywordsAdministration, InhalationAge FactorsAnimalsAnimals, NewbornAntigensBehavioral SymptomsBrainCell ProliferationCentral Nervous SystemDose-Response Relationship, DrugEnzyme InhibitorsExploratory BehaviorFemaleFree Radical ScavengersGene Expression Regulation, DevelopmentalIn Situ Nick-End LabelingKi-67 AntigenMaleMiceMice, Inbred C57BLMyelin Basic ProteinMyelin Proteolipid ProteinNerve Fibers, MyelinatedNerve Tissue ProteinsNeuronsNeuropsychological TestsNG-Nitroarginine Methyl EsterNitric OxideNitric Oxide Synthase Type IIO AntigensOligodendrogliaProteoglycansRatsRats, Sprague-DawleySpace PerceptionSpatial BehaviorStatistics, NonparametricConceptsEndogenous NONitric oxide synthase inhibitor N-nitro-L-arginine methyl esterN-nitro-L-arginine methyl esterL-NAME-treated animalsNitric oxidePerinatal brain damageSubsequent behavioral deficitsCentral nervous system myelinationNeonatal exposureC57BL/6 miceNeonatal periodBrain damagePromising therapyBehavioral deficitsMouse pupsImmature oligodendrocytesPotential new avenuesWhite matterLow dosesProliferative effectMyelination defectsMyelinationTransient increaseINODeleterious effectsA new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry
Hallani S, Boisselier B, Peglion F, Rousseau A, Colin C, Idbaih A, Marie Y, Mokhtari K, Thomas JL, Eichmann A, Delattre JY, Maniotis AJ, Sanson M. A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain 2010, 133: 973-982. PMID: 20375132, PMCID: PMC4861203, DOI: 10.1093/brain/awq044.Peer-Reviewed Original ResearchConceptsStem-like cellsGlioblastoma stem-like cellsVascular smooth muscle-like cellsSmooth muscle-like cellsAnti-angiogenic therapyMuscle-like cellsHuman glioblastoma tissuesTransient efficacyTreatment strategiesStem cell propertiesEndothelial proliferationVasculogenic mimicryTumor cellsHuman tumorsBlood vesselsGlioblastoma vasculatureGlioblastoma tissuesGlioblastoma cellsVascularizationCellsDe novoGene expressionNew alternative mechanismTherapyTumorsNeuropilin-2 mediates VEGF-C–induced lymphatic sprouting together with VEGFR3
Xu Y, Yuan L, Mak J, Pardanaud L, Caunt M, Kasman I, Larrivée B, del Toro R, Suchting S, Medvinsky A, Silva J, Yang J, Thomas JL, Koch AW, Alitalo K, Eichmann A, Bagri A. Neuropilin-2 mediates VEGF-C–induced lymphatic sprouting together with VEGFR3. Journal Of Cell Biology 2010, 188: 115-130. PMID: 20065093, PMCID: PMC2812843, DOI: 10.1083/jcb.200903137.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell ShapeCells, CulturedEndothelial CellsFemaleLymphangiogenesisLymphatic VesselsMaleMiceMice, Inbred C57BLMice, Inbred StrainsMice, TransgenicNeuropilin-2Protein BindingVascular Endothelial Growth Factor CVascular Endothelial Growth Factor Receptor-2Vascular Endothelial Growth Factor Receptor-3ConceptsLymphatic vessel sproutingVEGF receptor 2Lymphangiogenic vascular endothelial growth factors CSprouting defectsNeuropilin-2Vessel sproutingVascular endothelial growth factor CVEGF-C bindingAntibody treatmentEndothelial tip cellsReceptor 2Lymph vesselsLymphatic sproutingGenetic deletionHeterozygous miceTransmembrane receptorsTip cellsAdult organsMiceCell extensionsNRP2Vascular systemVascular sprout formationVascular sproutingVEGF
2008
Early Neuronal and Glial Fate Restriction of Embryonic Neural Stem Cells
Delaunay D, Heydon K, Cumano A, Schwab M, Thomas J, Suter U, Nave K, Zalc B, Spassky N. Early Neuronal and Glial Fate Restriction of Embryonic Neural Stem Cells. Journal Of Neuroscience 2008, 28: 2551-2562. PMID: 18322099, PMCID: PMC6671176, DOI: 10.1523/jneurosci.5497-07.2008.Peer-Reviewed Original ResearchConceptsGlial cellsEmbryonic neural stem cellsNeuronal progenitor cellsFate restrictionRadial glial cellsEmbryonic developmentNeural stem cellsNeuroepithelial progenitorsFate mappingNeuronal precursorsNeuroepithelial cellsNeurogenic periodStem cellsClonal analysisGlial precursorsProgenitor cellsGliogenic periodCellsProteolipid proteinNew poolDifferent time pointsLater stagesEmbryogenesis
2007
Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis?
Williams A, Piaton G, Aigrot MS, Belhadi A, Théaudin M, Petermann F, Thomas JL, Zalc B, Lubetzki C. Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? Brain 2007, 130: 2554-2565. PMID: 17855378, DOI: 10.1093/brain/awm202.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAnimalsApoptosisCerebral CortexDisease Models, AnimalFemaleHumansIntracellular Signaling Peptides and ProteinsMaleMembrane ProteinsMiddle AgedMotor CortexMultiple SclerosisMyelin SheathNerve RegenerationNerve Tissue ProteinsNeurogliaNeuronsRatsRats, WistarRNA, MessengerSemaphorin-3ASignal TransductionUp-RegulationConceptsMultiple sclerosisSemaphorin 3AAbility of plaqueActive demyelinating lesionsNeuronal cell bodiesFailure of repairCentral nervous systemOligodendrocyte precursor cellsOligodendrocyte precursor cell migrationPrecursor cell migrationChronic plaquesDemyelinating lesionsDemyelinated plaquesMyelin repairDemyelinated axonsMS tissueNervous systemCell bodiesExperimental modelPlaquesLesionsPrecursor cellsSclerosisOligodendroglial migrationCell migration
2004
Evaluation of Hematopoietic Potential Generated by Transplantation of Muscle-Derived Stem Cells in Mice
Farace F, Prestoz L, Badaoui S, Guillier M, Haond C, Opolon P, Thomas JL, Zalc B, Vainchenker W, Turhan AG. Evaluation of Hematopoietic Potential Generated by Transplantation of Muscle-Derived Stem Cells in Mice. Stem Cells And Development 2004, 13: 83-92. PMID: 15068696, DOI: 10.1089/154732804773099281.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB-LymphocytesBone Marrow CellsBone Marrow TransplantationCell DivisionCell LineageCell SeparationCell TransplantationChimeraFemaleFlow CytometryHematopoiesisHematopoietic Stem CellsHematopoietic SystemIn Situ Hybridization, FluorescenceKiller Cells, NaturalLeukocyte Common AntigensMaleMiceMice, Inbred C57BLMusclesPolymerase Chain ReactionSex FactorsStem CellsT-LymphocytesConceptsMarrow transplantationUse of muscleStem cellsTransplantation of musclesNatural killer cellsMarrow-derived stem cellsMuscle-derived hematopoietic stem cellsLevel of CFUMuscle-derived stem cellsMarrow stem cellsMuscle tissueMuscle transplantsKiller cellsTertiary recipientsHematopoietic chimerismMuscle graftsIrradiated miceAdult miceTransplantationHematopoietic stem cellsSecondary recipientsSimilar potencyMiceMurine muscleSerial transplantation
1998
Multiple Restricted Origin of Oligodendrocytes
Spassky N, Goujet-Zalc C, Parmantier E, Olivier C, Martinez S, Ivanova A, Ikenaka K, Macklin W, Cerruti I, Zalc B, Thomas J. Multiple Restricted Origin of Oligodendrocytes. Journal Of Neuroscience 1998, 18: 8331-8343. PMID: 9763477, PMCID: PMC6792828, DOI: 10.1523/jneurosci.18-20-08331.1998.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBeta-GalactosidaseBiomarkersBleomycinBrain ChemistryCell DifferentiationCell LineageCells, CulturedCentral Nervous SystemCloning, MolecularDNA-Binding ProteinsDrug Resistance, MicrobialFemaleGene Expression Regulation, DevelopmentalLac OperonMaleMiceMice, TransgenicNeuronsOligodendrogliaReceptors, Platelet-Derived Growth FactorStem CellsTranscription FactorsTransgenes