2010
Nitric Oxide Plays a Key Role in Myelination in the Developing Brain
Olivier P, Loron G, Fontaine R, Pansiot J, Dalous J, Thi H, Charriaut-Marlangue C, Thomas J, Mercier J, Gressens P, Baud O. Nitric Oxide Plays a Key Role in Myelination in the Developing Brain. Journal Of Neuropathology & Experimental Neurology 2010, 69: 828-837. PMID: 20613635, DOI: 10.1097/nen.0b013e3181ea5203.Peer-Reviewed Original ResearchMeSH KeywordsAdministration, InhalationAge FactorsAnimalsAnimals, NewbornAntigensBehavioral SymptomsBrainCell ProliferationCentral Nervous SystemDose-Response Relationship, DrugEnzyme InhibitorsExploratory BehaviorFemaleFree Radical ScavengersGene Expression Regulation, DevelopmentalIn Situ Nick-End LabelingKi-67 AntigenMaleMiceMice, Inbred C57BLMyelin Basic ProteinMyelin Proteolipid ProteinNerve Fibers, MyelinatedNerve Tissue ProteinsNeuronsNeuropsychological TestsNG-Nitroarginine Methyl EsterNitric OxideNitric Oxide Synthase Type IIO AntigensOligodendrogliaProteoglycansRatsRats, Sprague-DawleySpace PerceptionSpatial BehaviorStatistics, NonparametricConceptsEndogenous NONitric oxide synthase inhibitor N-nitro-L-arginine methyl esterN-nitro-L-arginine methyl esterL-NAME-treated animalsNitric oxidePerinatal brain damageSubsequent behavioral deficitsCentral nervous system myelinationNeonatal exposureC57BL/6 miceNeonatal periodBrain damagePromising therapyBehavioral deficitsMouse pupsImmature oligodendrocytesPotential new avenuesWhite matterLow dosesProliferative effectMyelination defectsMyelinationTransient increaseINODeleterious effectsA new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry
Hallani S, Boisselier B, Peglion F, Rousseau A, Colin C, Idbaih A, Marie Y, Mokhtari K, Thomas JL, Eichmann A, Delattre JY, Maniotis AJ, Sanson M. A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain 2010, 133: 973-982. PMID: 20375132, PMCID: PMC4861203, DOI: 10.1093/brain/awq044.Peer-Reviewed Original ResearchConceptsStem-like cellsGlioblastoma stem-like cellsVascular smooth muscle-like cellsSmooth muscle-like cellsAnti-angiogenic therapyMuscle-like cellsHuman glioblastoma tissuesTransient efficacyTreatment strategiesStem cell propertiesEndothelial proliferationVasculogenic mimicryTumor cellsHuman tumorsBlood vesselsGlioblastoma vasculatureGlioblastoma tissuesGlioblastoma cellsVascularizationCellsDe novoGene expressionNew alternative mechanismTherapyTumors
2008
Early Neuronal and Glial Fate Restriction of Embryonic Neural Stem Cells
Delaunay D, Heydon K, Cumano A, Schwab M, Thomas J, Suter U, Nave K, Zalc B, Spassky N. Early Neuronal and Glial Fate Restriction of Embryonic Neural Stem Cells. Journal Of Neuroscience 2008, 28: 2551-2562. PMID: 18322099, PMCID: PMC6671176, DOI: 10.1523/jneurosci.5497-07.2008.Peer-Reviewed Original ResearchConceptsGlial cellsEmbryonic neural stem cellsNeuronal progenitor cellsFate restrictionRadial glial cellsEmbryonic developmentNeural stem cellsNeuroepithelial progenitorsFate mappingNeuronal precursorsNeuroepithelial cellsNeurogenic periodStem cellsClonal analysisGlial precursorsProgenitor cellsGliogenic periodCellsProteolipid proteinNew poolDifferent time pointsLater stagesEmbryogenesis
2007
Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis
Larrivée B, Freitas C, Trombe M, Lv X, DeLafarge B, Yuan L, Bouvrée K, Bréant C, Del Toro R, Bréchot N, Germain S, Bono F, Dol F, Claes F, Fischer C, Autiero M, Thomas JL, Carmeliet P, Tessier-Lavigne M, Eichmann A. Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis. Genes & Development 2007, 21: 2433-2447. PMID: 17908930, PMCID: PMC1993874, DOI: 10.1101/gad.437807.Peer-Reviewed Original ResearchConceptsNetrin receptor UNC5BFull-length receptorVascular patterningEmbryonic developmentPotential anti-angiogenic targetCell repulsionGenetic lossSprouting angiogenesisAdult vasculaturePathological angiogenesisReceptor UNC5BUNC5B receptorUNC5BAnti-angiogenic targetAxonal growthAngiogenesisNetrin-1InhibitsActivation inhibitsReceptorsNetrinAngiogenesis inhibitionPatterningMatrigelIntracellularSemaphorin 3A and 3F: key players in myelin repair in multiple sclerosis?
Williams A, Piaton G, Aigrot MS, Belhadi A, Théaudin M, Petermann F, Thomas JL, Zalc B, Lubetzki C. Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? Brain 2007, 130: 2554-2565. PMID: 17855378, DOI: 10.1093/brain/awm202.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAnimalsApoptosisCerebral CortexDisease Models, AnimalFemaleHumansIntracellular Signaling Peptides and ProteinsMaleMembrane ProteinsMiddle AgedMotor CortexMultiple SclerosisMyelin SheathNerve RegenerationNerve Tissue ProteinsNeurogliaNeuronsRatsRats, WistarRNA, MessengerSemaphorin-3ASignal TransductionUp-RegulationConceptsMultiple sclerosisSemaphorin 3AAbility of plaqueActive demyelinating lesionsNeuronal cell bodiesFailure of repairCentral nervous systemOligodendrocyte precursor cellsOligodendrocyte precursor cell migrationPrecursor cell migrationChronic plaquesDemyelinating lesionsDemyelinated plaquesMyelin repairDemyelinated axonsMS tissueNervous systemCell bodiesExperimental modelPlaquesLesionsPrecursor cellsSclerosisOligodendroglial migrationCell migration
2006
VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain
Le Bras B, Barallobre MJ, Homman-Ludiye J, Ny A, Wyns S, Tammela T, Haiko P, Karkkainen MJ, Yuan L, Muriel MP, Chatzopoulou E, Bréant C, Zalc B, Carmeliet P, Alitalo K, Eichmann A, Thomas JL. VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nature Neuroscience 2006, 9: 340-348. PMID: 16462734, DOI: 10.1038/nn1646.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrainCell DifferentiationCells, CulturedEvolution, MolecularIntermediate Filament ProteinsLarvaLateral VentriclesMiceMice, KnockoutMice, TransgenicNerve Growth FactorsNerve Tissue ProteinsNestinNeuronsOligodendrogliaOptic NerveRatsRats, WistarStem CellsVascular Endothelial Growth Factor CVascular Endothelial Growth Factor Receptor-3Xenopus laevisConceptsNeural progenitor cellsReceptor VEGFR-3Mouse embryosNeural progenitorsVEGFR-3Progenitor cellsVertebrate embryonic brainBlood vessel defectsOligodendrocyte precursor cellsXenopus laevisAction of VEGFEmbryonic brainVascular endothelial growth factor CVEGF-C knockdownNeural cellsPrecursor cellsVessel defectsFactor CEmbryosGrowth factorProgenitorsCellsProliferation of OPCsVascular systemLymphatic vessels
2000
Spatiotemporal development of oligodendrocytes in the embryonic brain
Thomas J, Spassky N, Villegas E, Olivier C, Cobos I, Goujet‐Zalc C, Martínez S, Zalc B. Spatiotemporal development of oligodendrocytes in the embryonic brain. Journal Of Neuroscience Research 2000, 59: 471-476. PMID: 10679785, DOI: 10.1002/(sici)1097-4547(20000215)59:4<471::aid-jnr1>3.0.co;2-3.Peer-Reviewed Original ResearchConceptsCentral nervous systemOligodendrocyte precursor cellsPrecursor cellsNeural tubeSite of originSubventricular zoneNervous systemVentricular layerOligodendrocyte precursorsFirst neuronsOligodendrocyte progenitorsOligodendrocytesEmbryonic brainRostrocaudal axisLast cell typeQuail-chick chimerasProgenitor cellsRecent dataBrainCell typesMosaic populationProgenitor stageCellsNeurons