2024
VEGF-C prophylaxis favors lymphatic drainage and modulates neuroinflammation in a stroke model
Boisserand L, Geraldo L, Bouchart J, Kamouh M, Lee S, Sanganahalli B, Spajer M, Zhang S, Lee S, Parent M, Xue Y, Skarica M, Yin X, Guegan J, Boyé K, Leser F, Jacob L, Poulet M, Li M, Liu X, Velazquez S, Singhabahu R, Robinson M, Askenase M, Osherov A, Sestan N, Zhou J, Alitalo K, Song E, Eichmann A, Sansing L, Benveniste H, Hyder F, Thomas J. VEGF-C prophylaxis favors lymphatic drainage and modulates neuroinflammation in a stroke model. Journal Of Experimental Medicine 2024, 221: e20221983. PMID: 38442272, PMCID: PMC10913814, DOI: 10.1084/jem.20221983.Peer-Reviewed Original ResearchConceptsVascular endothelial growth factor-CDeep cervical lymph nodesCentral nervous systemEffect of vascular endothelial growth factor-CMeningeal lymphatic vesselsAmeliorated motor performanceCervical lymph nodesIschemic strokeVEGF-C overexpressionIncreased BDNF signalingAcute ischemic strokeBrain cellsIncreased CSF drainageIschemic stroke outcomesModel of ischemic strokeMouse model of ischemic strokeImmune surveillanceCSF drainageLymph nodesFluid drainageNucleus RNA sequencingLymphatic growthLymphatic drainageMouse modelBDNF signalingCompartmentalized ocular lymphatic system mediates eye–brain immunity
Yin X, Zhang S, Lee J, Dong H, Mourgkos G, Terwilliger G, Kraus A, Geraldo L, Poulet M, Fischer S, Zhou T, Mohammed F, Zhou J, Wang Y, Malloy S, Rohner N, Sharma L, Salinas I, Eichmann A, Thomas J, Saltzman W, Huttner A, Zeiss C, Ring A, Iwasaki A, Song E. Compartmentalized ocular lymphatic system mediates eye–brain immunity. Nature 2024, 628: 204-211. PMID: 38418880, PMCID: PMC10990932, DOI: 10.1038/s41586-024-07130-8.Peer-Reviewed Original ResearchResponse to herpes simplex virusCentral nervous systemImmune response to herpes simplex virusPosterior eyeImmune responseTherapeutic immune responsesOptic nerve sheathCervical lymph nodesAdeno-associated virusCNS diseaseDeep cervical lymph nodesHerpes simplex virusImmune protected miceCentral nervous system tissueLymphatic drainage systemImmunological featuresAnatomical extensionNerve sheathOptic nerveGene therapyLymph nodesMultiple dosesSimplex virusLymphatic circuitLymphatic signal
2023
CCL21-CCR7 signaling promotes microglia/macrophage recruitment and chemotherapy resistance in glioblastoma
Geraldo L, Garcia C, Xu Y, Leser F, Grimaldi I, de Camargo Magalhães E, Dejaegher J, Solie L, Pereira C, Correia A, De Vleeschouwer S, Tavitian B, Canedo N, Mathivet T, Thomas J, Eichmann A, Lima F. CCL21-CCR7 signaling promotes microglia/macrophage recruitment and chemotherapy resistance in glioblastoma. Cellular And Molecular Life Sciences 2023, 80: 179. PMID: 37314567, PMCID: PMC10267017, DOI: 10.1007/s00018-023-04788-7.Peer-Reviewed Original ResearchConceptsMicroglia/macrophage recruitmentC chemokine receptor type 7CCL21-CCR7Central nervous systemMacrophage recruitmentTumor microenvironmentChemokine receptor type 7Fatal primary tumorMouse GBM modelsChemokine ligand 21Potential therapeutic targetVEGF-A productionTumor cell deathCCR7 expressionTherapeutic optionsPrimary tumorPoor survivalCurrent treatmentGBM patientsTumor cell migrationTherapeutic targetBrain cancerNervous systemChemotherapy resistanceLigand 21
2021
Neuroinvasion of SARS-CoV-2 in human and mouse brain
Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, Lu P, Weizman OE, Liu F, Dai Y, Szigeti-Buck K, Yasumoto Y, Wang G, Castaldi C, Heltke J, Ng E, Wheeler J, Alfajaro MM, Levavasseur E, Fontes B, Ravindra NG, Van Dijk D, Mane S, Gunel M, Ring A, Kazmi SAJ, Zhang K, Wilen CB, Horvath TL, Plu I, Haik S, Thomas JL, Louvi A, Farhadian SF, Huttner A, Seilhean D, Renier N, Bilguvar K, Iwasaki A. Neuroinvasion of SARS-CoV-2 in human and mouse brain. Journal Of Experimental Medicine 2021, 218: e20202135. PMID: 33433624, PMCID: PMC7808299, DOI: 10.1084/jem.20202135.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Central nervous systemSARS-CoV-2 neuroinvasionImmune cell infiltratesCOVID-19 patientsType I interferon responseMultiple organ systemsCOVID-19I interferon responseHuman brain organoidsNeuroinvasive capacityCNS infectionsCell infiltrateNeuronal infectionPathological featuresCortical neuronsRespiratory diseaseDirect infectionCerebrospinal fluidNervous systemMouse brainInterferon responseOrgan systemsHuman ACE2Infection
2020
Three-Dimensional Imaging of the Vertebral Lymphatic Vasculature and Drainage using iDISCO+ and Light Sheet Fluorescence Microscopy.
Jacob L, Brito J, Thomas JL. Three-Dimensional Imaging of the Vertebral Lymphatic Vasculature and Drainage using iDISCO+ and Light Sheet Fluorescence Microscopy. Journal Of Visualized Experiments 2020 PMID: 32510513, DOI: 10.3791/61099.Peer-Reviewed Original ResearchConceptsLight sheet fluorescence microscopySheet fluorescence microscopyLymphatic vasculatureFluorescence microscopyCentral nervous systemLymphatic vesselsBiologyLymphatic systemLymphatic networkJoint biologyWhole-mount preparationsUnprecedented opportunityImmune surveillanceNervous systemImmune cellsTissueMount preparationsVertebral columnCNS tissueCellsMagnaMacromoleculesVEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours
Song E, Mao T, Dong H, Boisserand LSB, Antila S, Bosenberg M, Alitalo K, Thomas JL, Iwasaki A. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 2020, 577: 689-694. PMID: 31942068, PMCID: PMC7100608, DOI: 10.1038/s41586-019-1912-x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrain NeoplasmsCD8-Positive T-LymphocytesCell Cycle CheckpointsCell Line, TumorCell MovementCentral Nervous SystemCross-PrimingFemaleGlioblastomaHEK293 CellsHumansImmunologic MemoryImmunologic SurveillanceLymph NodesLymphangiogenesisLymphatic VesselsMaleMelanomaMeningesMiceMice, Inbred C57BLProgrammed Cell Death 1 ReceptorVascular Endothelial Growth Factor CConceptsCD8 T cellsCentral nervous systemT cellsImmune responseBrain tumorsImmune surveillanceLymphatic drainageNervous systemAntigen-specific immune responsesDeep cervical lymph nodesCapacity of VEGFCervical lymph nodesCheckpoint blockade therapyMeningeal lymphatic systemVascular endothelial growth factor CNew therapeutic approachesUncontrolled tumor growthMeningeal lymphatic vasculatureBlockade therapyLymph nodesTherapeutic approachesMouse modelTumor growthMemory responsesTumors
2019
Lymphatic system in central nervous system
Thomas JL, Jacob L, Boisserand L. Lymphatic system in central nervous system. Médecine/sciences 2019, 35: 55-61. PMID: 30672459, DOI: 10.1051/medsci/2018309.Peer-Reviewed Original ResearchConceptsCentral nervous systemCerebrospinal fluidImmune surveyNervous systemLymphatic vesselsLymphatic systemBrain interstitial fluidHuman CNS diseasesNew therapeutic targetsPeripheral lymphatic systemInterstitial fluid drainageCerebral drainageMeningeal lymphatic vasculatureInterstitial fluidCNS diseaseFluid drainageTherapeutic targetPerivascular spacesTissue drainageConsiderable metabolic activityVasculatureDrainageVesselsMetabolic activityLymphatic vasculature
2018
Orchestrating cortical brain development
Thomas JL. Orchestrating cortical brain development. Science 2018, 361: 754-755. PMID: 30139860, DOI: 10.1126/science.aau7155.Peer-Reviewed Original ResearchConceptsCentral nervous systemBrain developmentEndothelial cellsCentral nervous system morphologyCortical brain developmentNeuronal cell componentsProper brain developmentNervous system morphologyOwn vascular networkGlial cellsNervous systemBlood vesselsNeural tissueVasculatureVascular networkCellsCell componentsNeurons
2012
Molecular Parallels between Neural and Vascular Development
Eichmann A, Thomas JL. Molecular Parallels between Neural and Vascular Development. Cold Spring Harbor Perspectives In Medicine 2012, 3: a006551. PMID: 23024177, PMCID: PMC3530036, DOI: 10.1101/cshperspect.a006551.Peer-Reviewed Original ResearchConceptsCentral nervous systemAdult neurogenic nichesMolecular parallelsNeural stem cellsCardiac outputMolecular mechanismsBlood vesselsNeurovascular interactionsVascular developmentHuman diseasesStem cellsCNS blood vesselsHuman central nervous systemBlood-brain barrierVascular endothelial growth factorNeurogenic nicheCell populationsEndothelial growth factorGrowth factorEndothelial cellsBlood glucoseNervous systemImportant roleCellsUnique population
2011
A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells
Lamprianou S, Chatzopoulou E, Thomas J, Bouyain S, Harroch S. A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 17498-17503. PMID: 21969550, PMCID: PMC3198311, DOI: 10.1073/pnas.1108774108.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBinding SitesCell DifferentiationCell ProliferationContactin 1Crystallography, X-RayHumansMiceMice, KnockoutModels, MolecularModels, NeurologicalMultiprotein ComplexesNeural Stem CellsNeurogenesisOligodendrogliaProtein Structure, TertiaryReceptor-Like Protein Tyrosine Phosphatases, Class 5Recombinant ProteinsSolubilityConceptsCarbonic anhydrase-like domainPrecursor cellsReceptor protein tyrosineOligodendrocyte precursor cellsPtprz-deficient miceProtein tyrosineCell adhesion moleculeNeural cell adhesion moleculeBiological roleContactin familyCocrystal structureGlial cell populationsUnknown modulatorsPtprzCentral nervous systemCell populationsCNTN1Structural dataAdhesion moleculesBindsContactin-1CellsMature oligodendrocytesComplexesNervous system
2007
Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis?
Williams A, Piaton G, Aigrot MS, Belhadi A, Théaudin M, Petermann F, Thomas JL, Zalc B, Lubetzki C. Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? Brain 2007, 130: 2554-2565. PMID: 17855378, DOI: 10.1093/brain/awm202.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAnimalsApoptosisCerebral CortexDisease Models, AnimalFemaleHumansIntracellular Signaling Peptides and ProteinsMaleMembrane ProteinsMiddle AgedMotor CortexMultiple SclerosisMyelin SheathNerve RegenerationNerve Tissue ProteinsNeurogliaNeuronsRatsRats, WistarRNA, MessengerSemaphorin-3ASignal TransductionUp-RegulationConceptsMultiple sclerosisSemaphorin 3AAbility of plaqueActive demyelinating lesionsNeuronal cell bodiesFailure of repairCentral nervous systemOligodendrocyte precursor cellsOligodendrocyte precursor cell migrationPrecursor cell migrationChronic plaquesDemyelinating lesionsDemyelinated plaquesMyelin repairDemyelinated axonsMS tissueNervous systemCell bodiesExperimental modelPlaquesLesionsPrecursor cellsSclerosisOligodendroglial migrationCell migration
2005
Oligodendrocyte development in the embryonic brain: the contribution of the plp lineage
Le Bras B, Chatzopoulou E, Heydon K, Martínez S, Ikenaka K, Prestoz L, Spassky N, Zalc B, Thomas JL. Oligodendrocyte development in the embryonic brain: the contribution of the plp lineage. The International Journal Of Developmental Biology 2005, 49: 209-220. PMID: 15906234, DOI: 10.1387/ijdb.041963bl.Peer-Reviewed Original Research
2001
The Early Steps of Oligodendrogenesis: Insights from the Study of the plp Lineage in the Brain of Chicks and Rodents
Spassky N, Olivier C, Cobos I, LeBras B, Goujet-Zalc C, Martínez S, Zalc B, Thomas J. The Early Steps of Oligodendrogenesis: Insights from the Study of the plp Lineage in the Brain of Chicks and Rodents. Developmental Neuroscience 2001, 23: 318-326. PMID: 11756747, DOI: 10.1159/000048715.Peer-Reviewed Original ResearchConceptsOligodendroglial genesBrain of chicksCentral nervous systemMyelin-forming cellsSpinal cordPrimitive progenitor cellsNervous systemRodent brainOligodendroglial markersOligodendrocyte lineageEmbryonic brainProgenitor cellsBrainOligodendrogenesisCell lineagesProgenitor stageCellsChicksCordExpressionEarly stepsOligodendrocytesMonofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Olivier C, Cobos I, Villegas E, Spassky N, Zalc B, Martinez S, Thomas J. Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo. Development 2001, 128: 1757-1769. PMID: 11311157, DOI: 10.1242/dev.128.10.1757.Peer-Reviewed Original ResearchConceptsAnterior entopeduncular areaTelencephalic oligodendrocytesOligodendrocyte progenitor cellsCentral nervous systemMyelin-forming cellsRostrocaudal distributionCaudorostral axisVentricular originNervous systemOligodendroglial cellsChick brainOligodendrocytesOligodendrocyte precursorsOligodendrocyte progenitorsVentricular neuroepitheliumCaudal forebrainEntire telencephalonMigratory propertiesQuail-chick chimerasProgenitor cellsBrainChick embryosCellsOligodendrogenesis
2000
Spatiotemporal development of oligodendrocytes in the embryonic brain
Thomas J, Spassky N, Villegas E, Olivier C, Cobos I, Goujet‐Zalc C, Martínez S, Zalc B. Spatiotemporal development of oligodendrocytes in the embryonic brain. Journal Of Neuroscience Research 2000, 59: 471-476. PMID: 10679785, DOI: 10.1002/(sici)1097-4547(20000215)59:4<471::aid-jnr1>3.0.co;2-3.Peer-Reviewed Original ResearchConceptsCentral nervous systemOligodendrocyte precursor cellsPrecursor cellsNeural tubeSite of originSubventricular zoneNervous systemVentricular layerOligodendrocyte precursorsFirst neuronsOligodendrocyte progenitorsOligodendrocytesEmbryonic brainRostrocaudal axisLast cell typeQuail-chick chimerasProgenitor cellsRecent dataBrainCell typesMosaic populationProgenitor stageCellsNeurons
1999
Early Specification of Oligodendrocytes in the Chick Embryonic Brain
Villegas E, Olivier C, Spassky N, Poncet C, Cochard P, Zalc B, Thomas J, Martínez S. Early Specification of Oligodendrocytes in the Chick Embryonic Brain. Developmental Biology 1999, 216: 98-113. PMID: 10588866, DOI: 10.1006/dbio.1999.9438.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrainCell DifferentiationCells, CulturedChick EmbryoGene Expression Regulation, DevelopmentalImmunohistochemistryIn Situ HybridizationMyelin Proteolipid ProteinOligodendrogliaReceptor, Platelet-Derived Growth Factor alphaReverse Transcriptase Polymerase Chain ReactionRNA, Messenger
1997
In situ expression of PLP/DM‐20, MBP, and CNP during embryonic and postnatal development of the jimpy mutant and of transgenic mice overexpressing PLP
Peyron F, Timsit S, Thomas J, Kagawa T, Ikenaka K, Zalc B. In situ expression of PLP/DM‐20, MBP, and CNP during embryonic and postnatal development of the jimpy mutant and of transgenic mice overexpressing PLP. Journal Of Neuroscience Research 1997, 50: 190-201. PMID: 9373029, DOI: 10.1002/(sici)1097-4547(19971015)50:2<190::aid-jnr8>3.0.co;2-a.Peer-Reviewed Original ResearchConceptsPLP/DMCyclic nucleotide phosphodiesteraseDM-20PLP geneMyelin basic proteinDM-20 mRNAPattern of expressionEmbryonic developmentLevel of expressionJimpy mutantPeripheral nervous systemTransgenic micePrecursors of oligodendrocytesSpatiotemporal expressionDistinct poolsNeural tubeCentral nervous systemPMP‐22 expression in the central nervous system of the embryonic mouse defines potential transverse segments and longitudinal columns
Parmantier E, Braun C, Thomas J, Peyron F, Martinez S, Zalc B. PMP‐22 expression in the central nervous system of the embryonic mouse defines potential transverse segments and longitudinal columns. The Journal Of Comparative Neurology 1997, 378: 159-172. PMID: 9120057, DOI: 10.1002/(sici)1096-9861(19970210)378:2<159::aid-cne1>3.0.co;2-2.Peer-Reviewed Original ResearchConceptsCentral nervous systemCranial nerve motor nucleiSpinal cordPMP-22Motor nucleusNervous systemVentricular zoneCaudo-rostral axisPeripheral nervous system myelinEarly postnatal developmentRostro-caudal gradientVentral spinal cordPostnatal developmentCordMesencephalonEmbryonic miceEmbryonic daySystem myelinMotoneuronsLongitudinal columnsTransverse segmentsProsencephalonRoof plateForebrain organizationExpression