2023
LRRC23 truncation impairs radial spoke 3 head assembly and sperm motility underlying male infertility
Hwang J, Chai P, Nawaz S, Choi J, Lopez-Giraldez F, Hussain S, Bilguvar K, Mane S, Lifton R, Ahmad W, Zhang K, Chung J. LRRC23 truncation impairs radial spoke 3 head assembly and sperm motility underlying male infertility. ELife 2023, 12: rp90095. PMID: 38091523, PMCID: PMC10721216, DOI: 10.7554/elife.90095.Peer-Reviewed Original ResearchAbl2 repairs microtubules and phase separates with tubulin to promote microtubule nucleation
Duan D, Lyu W, Chai P, Ma S, Wu K, Wu C, Xiong Y, Sestan N, Zhang K, Koleske A. Abl2 repairs microtubules and phase separates with tubulin to promote microtubule nucleation. Current Biology 2023, 33: 4582-4598.e10. PMID: 37858340, PMCID: PMC10877310, DOI: 10.1016/j.cub.2023.09.018.Peer-Reviewed Original ResearchConceptsCOS-7 cellsMT nucleationMT latticeFamily kinasesTubulin recruitmentLiquid-liquid phase separationTubulin C-terminal tailsCryo-EM analysisC-terminal tailAbl family kinasesWild-type cellsC-terminal halfRescue frequencyGenetic experimentsNeuronal morphogenesisMicrotubule nucleationSplice isoformsMicrotubule dynamicsNocodazole treatmentMolecular mechanismsAxon guidanceCell migrationDamage sitesABL2MT assembly
2018
A brief introduction of cryo-EM revolution—the Nobel Prize in Chemistry 2017
Zhang K, Liu Z. A brief introduction of cryo-EM revolution—the Nobel Prize in Chemistry 2017. Science China Life Sciences 2018, 61: 368-370. PMID: 29318502, DOI: 10.1007/s11427-017-9215-3.Peer-Reviewed Original Research
2017
Cryo-EM Reveals How Human Cytoplasmic Dynein Is Auto-inhibited and Activated
Zhang K, Foster HE, Rondelet A, Lacey SE, Bahi-Buisson N, Bird AW, Carter AP. Cryo-EM Reveals How Human Cytoplasmic Dynein Is Auto-inhibited and Activated. Cell 2017, 169: 1303-1314.e18. PMID: 28602352, PMCID: PMC5473941, DOI: 10.1016/j.cell.2017.05.025.Peer-Reviewed Original ResearchConceptsStructure-based mutagenesisCryoelectron microscopy structureCargo adaptor proteinsMicroscopy structureAdaptor proteinCytoplasmic dyneinMicrotubule affinityCryo-EMDynein 1DynactinOpen formDynein tailInhibited stateProcessive movementMotor domainMicrotubulesMotor dimerizationTransport machinesHigh affinityMutagenesisDyneinTailAffinityProteinDimerization
2016
FIRT: Filtered iterative reconstruction technique with information restoration
Chen Y, Zhang Y, Zhang K, Deng Y, Wang S, Zhang F, Sun F. FIRT: Filtered iterative reconstruction technique with information restoration. Journal Of Structural Biology 2016, 195: 49-61. PMID: 27134004, DOI: 10.1016/j.jsb.2016.04.015.Peer-Reviewed Original ResearchConceptsAlgebra reconstruction techniqueElectron tomographyLimited angular samplingBack-projection methodIterative image reconstruction algorithmImage reconstruction algorithmTomography applicationsBiological specimenIterative reconstruction techniqueAngular regionReconstruction techniqueRay artifactsExperimental dataAngular samplingReconstruction algorithmSmooth natureStructural detailsSub-volume averagingFilter technique
2015
The structure of the dynactin complex and its interaction with dynein
Urnavicius L, Zhang K, Diamant AG, Motz C, Schlager MA, Yu M, Patel NA, Robinson CV, Carter AP. The structure of the dynactin complex and its interaction with dynein. Science 2015, 347: 1441-1446. PMID: 25814576, PMCID: PMC4413427, DOI: 10.1126/science.aaa4080.Peer-Reviewed Original ResearchConceptsDynactin complexBicaudal D2Microtubule motors cytoplasmic dynein-1Distinct protein complexesCytoplasmic dynein-1Cryo-electron microscopyProtein Arp1Protein complexesAngstrom structureDynein 1DynactinEssential cofactorÎ’-actinDyneinShoulder domainDependent interactionFilamentsComplexesArp1CofactorActinCopiesInteractionPeptidesDomain
2014
Cryo-EM structures of two bovine adenovirus type 3 intermediates
Cheng L, Huang X, Li X, Xiong W, Sun W, Yang C, Zhang K, Wang Y, Liu H, Huang X, Ji G, Sun F, Zheng C, Zhu P. Cryo-EM structures of two bovine adenovirus type 3 intermediates. Virology 2014, 450: 174-181. PMID: 24503080, DOI: 10.1016/j.virol.2013.12.012.Peer-Reviewed Original ResearchConceptsCryo-electron tomography analysisDNA encapsidation processCryo-EM structureCryo-electron microscopyVertebrate speciesFirst structural comparisonProtein VIDNA encapsidationEncapsidation processStructural comparisonProtein IXUnique conformationBackbone levelIntermediate structuresHuman ADMass spectrometryLater stagesEncapsidationSpeciesSimilar structureBAd3HostIntermediatesAssemblyCleavage
2013
Atomic Model of Rabbit Hemorrhagic Disease Virus by Cryo-Electron Microscopy and Crystallography
Wang X, Xu F, Liu J, Gao B, Liu Y, Zhai Y, Ma J, Zhang K, Baker TS, Schulten K, Zheng D, Pang H, Sun F. Atomic Model of Rabbit Hemorrhagic Disease Virus by Cryo-Electron Microscopy and Crystallography. PLOS Pathogens 2013, 9: e1003132. PMID: 23341770, PMCID: PMC3547835, DOI: 10.1371/journal.ppat.1003132.Peer-Reviewed Original Research
2012
Structural Insights into the Substrate Specificity of Human Granzyme H: The Functional Roles of a Novel RKR Motif
Wang L, Zhang K, Wu L, Liu S, Zhang H, Zhou Q, Tong L, Sun F, Fan Z. Structural Insights into the Substrate Specificity of Human Granzyme H: The Functional Roles of a Novel RKR Motif. The Journal Of Immunology 2012, 188: 765-773. PMID: 22156497, DOI: 10.4049/jimmunol.1101381.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAnimalsCatalytic DomainCatsCell LineCell Line, TransformedCrystallography, X-RayCytotoxicity, ImmunologicDogsGranzymesHumansHydrogen-Ion ConcentrationK562 CellsMolecular Sequence DataPan troglodytesProtein BindingSerine Proteinase InhibitorsSubstrate SpecificityConceptsRKR motifHuman granzyme HStructural insightsSubstrate recognition mechanismChymotrypsin-like serine proteaseGranzyme HSubstrate recognitionSubstrate specificitySubstrate preferenceChloromethylketone inhibitorAcidic residuesInnate immune responseAromatic residuesFunctional roleP1 positionSerine proteasesS1 pocketRecognition mechanismMotifGzmHResiduesProteolytic activityDecapeptide substrateImportant roleMutants