Lin H, Colak E, Richards T, Kitamura F, Prevedello L, Talbott J, Ball R, Gumeler E, Yeom K, Hamghalam M, Simpson A, Strika J, Bulja D, Angkurawaranon S, Pérez-Lara A, Gómez-Alonso M, Ortiz Jiménez J, Peoples J, Law M, Dogan H, Altinmakas E, Youssef A, Mahfouz Y, Kalpathy-Cramer J, Flanders A, Abdala N, Brassil M, Crivellaro P, Duh A, Ekladious F, de Mattos Farina E, Gemae M, Huang A, Islam O, Kruscica N, Kushdilian M, Lee R, Merali Z, Moreland R, Natalwalla S, Samorodova O, Shpanskaya Y, Sundaram B, Suthiphosuwan S, Tafur M, Tampieri D, Wilson J, Witiw C, Zia A, D’Anna G, Grayev A, Hierro F, Hollander M, Ikuta I, Lincoln C, Shah L, Singh A, Doyle N, Colon Flores L, Agarwal V, Andersen S, Bailey K, Choudhary G, Chu S, Chung C, Costacurta A, Danial M, de Oliveira Santo I, Dola V, Hsieh K, Khalil A, Lall N, Letourneau-Guillon L, Malin D, Mason J, Montaño M, Moron F, Nath J, Nguyen X, Ormsby J, Oswood M, Ozsarlak O, Rogers S, Rudie J, Sayah A, Schwartz E, Siakallis L, Horner N, de Leão R. The RSNA Cervical Spine Fracture CT Dataset. Radiology Artificial Intelligence 2023, 5: e230034. PMID: 37795143, PMCID: PMC10546361, DOI: 10.1148/ryai.230034.Peer-Reviewed Original Research