2021
Regeneration of infarcted mouse hearts by cardiovascular tissue formed via the direct reprogramming of mouse fibroblasts
Cho J, Kim S, Lee H, Rah W, Cho HC, Kim NK, Bae S, Shin DH, Lee MG, Park IH, Tanaka Y, Shin E, Yi H, Han JW, Hwang PTJ, Jun HW, Park HJ, Cho K, Lee SW, Jung JK, Levit RD, Sussman MA, Harvey RP, Yoon YS. Regeneration of infarcted mouse hearts by cardiovascular tissue formed via the direct reprogramming of mouse fibroblasts. Nature Biomedical Engineering 2021, 5: 880-896. PMID: 34426676, PMCID: PMC8809198, DOI: 10.1038/s41551-021-00783-0.Peer-Reviewed Original ResearchConceptsDirect reprogrammingMouse tail-tip fibroblastsBone morphogenetic protein 4Smooth muscle cellsTail-tip fibroblastsMuscle cellsSomatic cellsEndothelial cellsReprogrammingCell typesTissue-like structuresMouse fibroblastsProtein 4Gap junctionsCardiovascular tissuesVessel formationDisease modellingDrug discoveryImmature characteristicsFibroblastsCellsMouse heartsCardiomyocytesTissueHost cardiomyocytes
2012
Development of a novel two-dimensional directed differentiation system for generation of cardiomyocytes from human pluripotent stem cells
Moon SH, Ban K, Kim C, Kim SS, Byun J, Song MK, Park IH, Yu SP, Yoon YS. Development of a novel two-dimensional directed differentiation system for generation of cardiomyocytes from human pluripotent stem cells. International Journal Of Cardiology 2012, 168: 41-52. PMID: 23044428, PMCID: PMC3556195, DOI: 10.1016/j.ijcard.2012.09.077.Peer-Reviewed Original Research