2014
In Vivo Roles of a Patient-Derived Induced Pluripotent Stem Cell Line (HD72-iPSC) in the YAC128 Model of Huntington’s Disease
Jeon I, Choi C, Lee N, Im W, Kim M, Oh SH, Park IH, Kim HS, Song J. In Vivo Roles of a Patient-Derived Induced Pluripotent Stem Cell Line (HD72-iPSC) in the YAC128 Model of Huntington’s Disease. International Journal Of Stem Cells 2014, 7: 43-47. PMID: 24921027, PMCID: PMC4049731, DOI: 10.15283/ijsc.2014.7.1.43.Peer-Reviewed Original ResearchHuntington's diseaseHD pathologyNeural precursorsAvailable therapeutic optionsHD mouse modelsYAC128 transgenic miceSignificant behavioral improvementCAG repeatsVivo roleYAC128 modelGrafted miceTherapeutic optionsGrafted cellsPatient-derived iPSCsMouse modelTransgenic miceBehavioral improvementDiseaseNovel therapeuticsMiceCell linesPluripotent stem cell linePathologyStem cellsNeurodegenerative genetic disease
2013
Pluripotent Stem Cell Models of Shwachman-Diamond Syndrome Reveal a Common Mechanism for Pancreatic and Hematopoietic Dysfunction
Tulpule A, Kelley JM, Lensch MW, McPherson J, Park IH, Hartung O, Nakamura T, Schlaeger TM, Shimamura A, Daley GQ. Pluripotent Stem Cell Models of Shwachman-Diamond Syndrome Reveal a Common Mechanism for Pancreatic and Hematopoietic Dysfunction. Cell Stem Cell 2013, 12: 727-736. PMID: 23602541, PMCID: PMC3755012, DOI: 10.1016/j.stem.2013.04.002.Peer-Reviewed Original ResearchConceptsHuman embryonic stem cellsPluripotent stem cell modelsStem cell modelShwachman-Diamond syndromeHuman pluripotent stem cell modelSBDS protein expressionEmbryonic stem cellsDiamond syndrome (SBDS) geneStem cell linesHematopoietic dysfunctionPluripotent stem cell lineHematopoietic phenotypeInduced pluripotent stem cell lineHematopoietic differentiationCell modelTransgene rescueShwachman-BodianSyndrome geneHuman diseasesElevated protease levelsNovel insightsMechanistic linkStem cellsEnhanced apoptosisProtein expression
2012
Modeling Supravalvular Aortic Stenosis Syndrome With Human Induced Pluripotent Stem Cells
Ge X, Ren Y, Bartulos O, Lee MY, Yue Z, Kim KY, Li W, Amos PJ, Bozkulak EC, Iyer A, Zheng W, Zhao H, Martin KA, Kotton DN, Tellides G, Park IH, Yue L, Qyang Y. Modeling Supravalvular Aortic Stenosis Syndrome With Human Induced Pluripotent Stem Cells. Circulation 2012, 126: 1695-1704. PMID: 22914687, PMCID: PMC3586776, DOI: 10.1161/circulationaha.112.116996.Peer-Reviewed Original ResearchConceptsActin filament bundlesSmooth muscle αSmooth muscle cellsExtracellular signal-regulated kinase 1/2Muscle αFilament bundlesSignal-regulated kinase 1/2Four-nucleotide insertionDisease mechanismsContractile smooth muscle cellsStem cell linesPluripotent stem cellsPluripotent stem cell linePlatelet-derived growth factorRhoA signalingVascular smooth muscle cellsRecombinant proteinsKinase 1/2Elastin geneELN geneWilliams-Beuren syndromeBrdU analysisSupravalvular aortic stenosisStem cellsHigh proliferation rateMutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability
Bilican B, Serio A, Barmada SJ, Nishimura AL, Sullivan GJ, Carrasco M, Phatnani HP, Puddifoot CA, Story D, Fletcher J, Park IH, Friedman BA, Daley GQ, Wyllie DJ, Hardingham GE, Wilmut I, Finkbeiner S, Maniatis T, Shaw CE, Chandran S. Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 5803-5808. PMID: 22451909, PMCID: PMC3326463, DOI: 10.1073/pnas.1202922109.Peer-Reviewed Original ResearchConceptsAmyotrophic lateral sclerosisTDP-43 proteinopathyTDP-43Human neuronsTransactive response DNA binding proteinFrontotemporal lobar degenerationFamilial amyotrophic lateral sclerosisFunctional motor neuronsCell-specific vulnerabilityTDP-43 proteinDNA binding proteinPI3K pathwayCell-autonomous phenotypeMotor neuronsLateral sclerosisStem cell linesPluripotent stem cellsGeneration of iPSCsIdentification of mutationsPluripotent stem cell lineMutant neuronsNeuronsK pathwayElevated levelsDisease mechanisms
2010
Robust Enhancement of Neural Differentiation from Human ES and iPS Cells Regardless of their Innate Difference in Differentiation Propensity
Kim DS, Lee JS, Leem JW, Huh YJ, Kim JY, Kim HS, Park IH, Daley GQ, Hwang DY, Kim DW. Robust Enhancement of Neural Differentiation from Human ES and iPS Cells Regardless of their Innate Difference in Differentiation Propensity. Stem Cell Reviews And Reports 2010, 6: 270-281. PMID: 20376579, DOI: 10.1007/s12015-010-9138-1.Peer-Reviewed Original ResearchConceptsDifferentiation propensityStem cell linesCell lineagesNeural differentiationHuman embryonic stem cell linesEmbryonic stem cell linesCell typesActivin/NodalHuman pluripotent stem cell linesDesirable cell typesSpecific cell typesCell linesModulation of intracellularPluripotent stem cellsPluripotent stem cell lineBMP pathwaySpecific lineagesIPS cellsUndifferentiated cellsLineagesDifferentiation potentialHuman ESStem cellsNeural cellsDifferentiation
2009
Hematopoietic Development From Human Induced Pluripotent Stem Cells.
Grauer M, Konantz M, Niebuhr N, Kanz L, Park I, Daley G, Lengerke C. Hematopoietic Development From Human Induced Pluripotent Stem Cells. Blood 2009, 114: 2530. DOI: 10.1182/blood.v114.22.2530.2530.Peer-Reviewed Original ResearchMouse embryonic stem cellsEmbryonic stem cellsInduced pluripotent stem cellsPluripotent stem cellsHuman embryonic stem cellsHematopoietic stem cellsHuman induced pluripotent stem cellsHuman iPS cellsIPS cellsCdx genesHematopoietic developmentBlood lineagesStem cellsBlood formationEmbryonic blood formationGenetic modificationHuman developmental hematopoiesisDifferentiated somatic cellsHuman pluripotent stem cell linesStem cell linesIrradiated adult micePluripotent stem cell lineDevelopmental hematopoiesisHematopoietic genesHox genesCardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells
Zwi L, Caspi O, Arbel G, Huber I, Gepstein A, Park IH, Gepstein L. Cardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells. Circulation 2009, 120: 1513-1523. PMID: 19786631, DOI: 10.1161/circulationaha.109.868885.Peer-Reviewed Original ResearchConceptsTranscription factorsHiPS cellsCardiomyocyte differentiationCardiac-specific transcription factorsInduced pluripotent stem cellsGene expression studiesHuman induced pluripotent stem cellsStem cell linesPluripotent stem cellsCardiomyocyte differentiation potentialPluripotent stem cell lineStructural geneContracting embryoid bodiesCardiomyocyte differentiation processTranslational cardiovascular researchEmbryoid bodiesExpression studiesDifferentiation systemDifferentiation processCardiovascular regenerative medicineSarcomeric proteinsDifferentiation potentialIon channelsAdult fibroblastsFunctional properties
2008
Regulatory networks define phenotypic classes of human stem cell lines
Müller FJ, Laurent LC, Kostka D, Ulitsky I, Williams R, Lu C, Park IH, Rao MS, Shamir R, Schwartz PH, Schmidt NO, Loring JF. Regulatory networks define phenotypic classes of human stem cell lines. Nature 2008, 455: 401-405. PMID: 18724358, PMCID: PMC2637443, DOI: 10.1038/nature07213.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsAnimalsArtificial IntelligenceCell DifferentiationCell LineComputational BiologyDatabases, FactualEmbryonic Stem CellsGene Expression ProfilingHumansMiceMultipotent Stem CellsOligonucleotide Array Sequence AnalysisOocytesPhenotypePluripotent Stem CellsProtein BindingStem CellsConceptsStem cell linesStem cellsCell linesCell typesProtein-protein networkHuman stem cell linesDifferent human cell linesSpecific molecular networksPluripotent stem cell lineHuman stem cellsHuman cell linesRegulatory networksTranscriptional profilesBioinformatics analysisPhenotypic classesMolecular networksNeural stem cell lineLimited repertoireTight controlCellsCell samplesPluripotencyEmbryosLinesBroad range