2024
The HER2-directed antibody-drug conjugate DHES0815A in advanced and/or metastatic breast cancer: preclinical characterization and phase 1 trial results
Lewis G, Li G, Guo J, Yu S, Fields C, Lee G, Zhang D, Dragovich P, Pillow T, Wei B, Sadowsky J, Leipold D, Wilson T, Kamath A, Mamounas M, Lee M, Saad O, Choeurng V, Ungewickell A, Monemi S, Crocker L, Kalinsky K, Modi S, Jung K, Hamilton E, LoRusso P, Krop I, Schutten M, Commerford R, Sliwkowski M, Cho E. The HER2-directed antibody-drug conjugate DHES0815A in advanced and/or metastatic breast cancer: preclinical characterization and phase 1 trial results. Nature Communications 2024, 15: 466. PMID: 38212321, PMCID: PMC10784567, DOI: 10.1038/s41467-023-44533-z.Peer-Reviewed Original ResearchConceptsHER2 antibody-drug conjugatesAntibody-drug conjugatesMetastatic breast cancerPhase 1 trialBreast cancerHER2-positive metastatic breast cancerHER2-positive breast cancerObjective response rateDose-escalation studyDuration of responseModel of HER2Anti-tumor activityMechanism of actionTrastuzumab deruxtecanPulmonary toxicityTrastuzumab emtansinePreclinical characterizationResponse rateHigh dosesVivo efficacySecondary objectiveEarly signsPotent cytotoxic agentCytotoxic agentsCancer
2022
Multiomics in primary and metastatic breast tumors from the AURORA US network finds microenvironment and epigenetic drivers of metastasis
Garcia-Recio S, Hinoue T, Wheeler G, Kelly B, Garrido-Castro A, Pascual T, De Cubas A, Xia Y, Felsheim B, McClure M, Rajkovic A, Karaesmen E, Smith M, Fan C, Ericsson P, Sanders M, Creighton C, Bowen J, Leraas K, Burns R, Coppens S, Wheless A, Rezk S, Garrett A, Parker J, Foy K, Shen H, Park B, Krop I, Anders C, Gastier-Foster J, Rimawi M, Nanda R, Lin N, Isaacs C, Marcom P, Storniolo A, Couch F, Chandran U, Davis M, Silverstein J, Ropelewski A, Liu M, Hilsenbeck S, Norton L, Richardson A, Symmans W, Wolff A, Davidson N, Carey L, Lee A, Balko J, Hoadley K, Laird P, Mardis E, King T, Perou C. Multiomics in primary and metastatic breast tumors from the AURORA US network finds microenvironment and epigenetic drivers of metastasis. Nature Cancer 2022, 4: 128-147. PMID: 36585450, PMCID: PMC9886551, DOI: 10.1038/s43018-022-00491-x.Peer-Reviewed Original ResearchConceptsMetastatic breast cancerBreast cancerHER2-targeted therapiesImmune cell infiltratesMetastatic breast tumorsLiver metastasesCell infiltrateLow-pass whole-genome sequencingSubtype changesT cellsEstrogen receptorTumor subtypesEndothelial contentBreast tumorsMetastasisCell-cell adhesion genesReduced expressionGlobal DNA methylationDNA methylation mechanismsFocal deletionsMolecular featuresWhole-genome sequencingCancerSubtypesRNA sequencing
2020
CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity
Watt AC, Cejas P, DeCristo MJ, Metzger-Filho O, Lam EYN, Qiu X, BrinJones H, Kesten N, Coulson R, Font-Tello A, Lim K, Vadhi R, Daniels VW, Montero J, Taing L, Meyer CA, Gilan O, Bell CC, Korthauer KD, Giambartolomei C, Pasaniuc B, Seo JH, Freedman ML, Ma C, Ellis MJ, Krop I, Winer E, Letai A, Brown M, Dawson MA, Long HW, Zhao JJ, Goel S. CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity. Nature Cancer 2020, 2: 34-48. PMID: 33997789, PMCID: PMC8115221, DOI: 10.1038/s43018-020-00135-y.Peer-Reviewed Original ResearchConceptsSet of enhancersTranscription factor proteinsAP-1 transcriptional activityEndogenous retroviral elementsCell cycle arrestEnhancer landscapeCyclin-dependent kinase 4Cancer cell cycle arrestEnhancer activationCell chromatinApoptotic evasionTranscriptional activityPathway biologyRetroviral elementsApoptotic responsePharmacologic inhibitorsCancer cell immunogenicityFactor proteinNew enhancersKinase 4Cycle arrestLuminal differentiationCDK4/6 inhibitionCDK4/6 inhibitorsEnhancer
2019
First‐in‐human, phase I study of PF‐06647263, an anti‐EFNA4 calicheamicin antibody–drug conjugate, in patients with advanced solid tumors
Garrido‐Laguna I, Krop I, Burris HA, Hamilton E, Braiteh F, Weise AM, Abu‐Khalaf M, Werner TL, Pirie‐Shepherd S, Zopf CJ, Lakshminarayanan M, Holland JS, Baffa R, Hong DS. First‐in‐human, phase I study of PF‐06647263, an anti‐EFNA4 calicheamicin antibody–drug conjugate, in patients with advanced solid tumors. International Journal Of Cancer 2019, 145: 1798-1808. PMID: 30680712, PMCID: PMC6875752, DOI: 10.1002/ijc.32154.Peer-Reviewed Original ResearchConceptsTriple-negative breast cancerAdvanced solid tumorsTumor responseSolid tumorsMetastatic triple-negative breast cancerPhase IPhase 2 doseAntitumor activityHuman xenograft tumor modelsAvailable standard therapiesDose-related mannerLimited antitumor activityXenograft tumor modelCommon AEsStable diseaseManageable safetyPartial responsePotent antitumor activityStandard therapyToxicity probability interval methodOvarian cancerBreast cancerPatientsRP2DTumor model
2018
Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2
Incio J, Ligibel JA, McManus DT, Suboj P, Jung K, Kawaguchi K, Pinter M, Babykutty S, Chin SM, Vardam TD, Huang Y, Rahbari NN, Roberge S, Wang D, Gomes-Santos IL, Puchner SB, Schlett CL, Hoffmman U, Ancukiewicz M, Tolaney SM, Krop IE, Duda DG, Boucher Y, Fukumura D, Jain RK. Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Science Translational Medicine 2018, 10 PMID: 29540614, PMCID: PMC5936748, DOI: 10.1126/scitranslmed.aag0945.Peer-Reviewed Original ResearchConceptsVEGF therapyInterleukin-6Breast cancerMouse modelAnti-vascular endothelial growth factor therapyEndothelial growth factor therapyTumor vasculatureAnti-VEGF therapyAnti-VEGF treatmentIL-6 blockadeGrowth factor therapyIL-6 productionFGF-2Up-regulates IL-6Second mouse modelFGF-2 expressionTumor cell proliferationFactor therapyGrowth factor 2Proinflammatory factorsMetastatic sitesBC patientsObese miceReceptor inhibitionSystemic concentrations
2017
CDK4/6 inhibition triggers anti-tumour immunity
Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB, Khan N, Ubellacker JM, Xie S, Metzger-Filho O, Hoog J, Ellis MJ, Ma CX, Ramm S, Krop IE, Winer EP, Roberts TM, Kim HJ, McAllister SS, Zhao JJ. CDK4/6 inhibition triggers anti-tumour immunity. Nature 2017, 548: 471-475. PMID: 28813415, PMCID: PMC5570667, DOI: 10.1038/nature23465.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigen PresentationBiological MimicryBreast NeoplasmsCell Cycle CheckpointsCell Line, TumorCell ProliferationCyclin-Dependent Kinase 4Cyclin-Dependent Kinase 6Disease Models, AnimalFemaleHumansInterferonsMicePhosphorylationProtein Kinase InhibitorsRepressor ProteinsRNA, Double-StrandedSignal TransductionT-Lymphocytes, RegulatoryTranscriptomeVirusesPhase I Dose-Escalation Study of Taselisib, an Oral PI3K Inhibitor, in Patients with Advanced Solid Tumors
Juric D, Krop I, Ramanathan RK, Wilson TR, Ware JA, Bohorquez S, Savage HM, Sampath D, Salphati L, Lin RS, Jin H, Parmar H, Hsu JY, Von Hoff DD, Baselga J. Phase I Dose-Escalation Study of Taselisib, an Oral PI3K Inhibitor, in Patients with Advanced Solid Tumors. Cancer Discovery 2017, 7: 704-715. PMID: 28331003, PMCID: PMC5501742, DOI: 10.1158/2159-8290.cd-16-1080.Peer-Reviewed Original ResearchConceptsDose-limiting toxicityAdverse eventsMutant tumorsHigh-grade adverse eventsTreatment-related adverse eventsConfirmed response rateMetastatic solid tumorsTumor xenograft modelPatient tumor samplesMeasurable diseasePharmacodynamic findingsPreclinical dataTumor patientsTumor growth inhibitorLow doseXenograft modelDose levelsResponse rateSolid tumorsPathway inhibitionPatientsPathway suppressionTumor samplesTumorsHotspot mutations
2016
PlGF/VEGFR-1 Signaling Promotes Macrophage Polarization and Accelerated Tumor Progression in Obesity
Incio J, Tam J, Rahbari NN, Suboj P, McManus DT, Chin SM, Vardam TD, Batista A, Babykutty S, Jung K, Khachatryan A, Hato T, Ligibel JA, Krop IE, Puchner SB, Schlett CL, Hoffmman U, Ancukiewicz M, Shibuya M, Carmeliet P, Soares R, Duda DG, Jain RK, Fukumura D. PlGF/VEGFR-1 Signaling Promotes Macrophage Polarization and Accelerated Tumor Progression in Obesity. Clinical Cancer Research 2016, 22: 2993-3004. PMID: 26861455, PMCID: PMC4911258, DOI: 10.1158/1078-0432.ccr-15-1839.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBreast NeoplasmsDiet, High-FatFemaleGlucoseHumansHypoglycemic AgentsMacrophagesMetforminMiceMice, Inbred C57BLMice, KnockoutMice, ObeseNeovascularization, PathologicObesityPancreatic NeoplasmsPlacenta Growth FactorPrognosisSignal TransductionVascular Endothelial Growth Factor Receptor-1ConceptsMouse modelTumor progressionTumor-associated macrophage recruitmentDiet-induced obese mouse modelTumor angiogenesisVEGFR-1Breast cancer mouse modelRole of PlGFBreast cancer patientsTumor immune microenvironmentObese mouse modelPlacental growth factorWild-type C57BL/6Addition of metforminHigh-fat dietTumor immune environmentCancer mouse modelReceptors VEGFR-1Breast cancer modelBreast cancer progressionAntitumor immunityTAM infiltrationImmune environmentInsulin levelsImmune microenvironmentCombination inhibition of PI3K and mTORC1 yields durable remissions in mice bearing orthotopic patient-derived xenografts of HER2-positive breast cancer brain metastases
Ni J, Ramkissoon SH, Xie S, Goel S, Stover DG, Guo H, Luu V, Marco E, Ramkissoon LA, Kang YJ, Hayashi M, Nguyen QD, Ligon AH, Du R, Claus EB, Alexander BM, Yuan GC, Wang ZC, Iglehart JD, Krop IE, Roberts TM, Winer EP, Lin NU, Ligon KL, Zhao JJ. Combination inhibition of PI3K and mTORC1 yields durable remissions in mice bearing orthotopic patient-derived xenografts of HER2-positive breast cancer brain metastases. Nature Medicine 2016, 22: 723-726. PMID: 27270588, PMCID: PMC4938731, DOI: 10.1038/nm.4120.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAminopyridinesAnimalsAntineoplastic AgentsApoptosisBrain NeoplasmsBreast NeoplasmsCarrier ProteinsCaspase 3Cell Cycle ProteinsDNA RepairDrug Resistance, NeoplasmDrug Therapy, CombinationEukaryotic Initiation FactorsEverolimusFemaleGene Expression ProfilingGenomic InstabilityHumansImmunohistochemistryKi-67 AntigenMagnetic Resonance ImagingMechanistic Target of Rapamycin Complex 1MiceMice, SCIDMolecular Targeted TherapyMorpholinesMultiprotein ComplexesNeoplasm TransplantationPhosphoinositide-3 Kinase InhibitorsPhosphoproteinsPhosphorylationReceptor, ErbB-2Remission InductionTOR Serine-Threonine KinasesXenograft Model Antitumor AssaysConceptsBreast cancer brain metastasesCancer brain metastasesBrain metastasesHER2-positive breast cancer brain metastasesOrthotopic patient-derived xenograftsPI3KPatient-derived xenograftsDurable remissionsTherapeutic responseMouse modelCombined inhibitionCombination inhibitionMetastasisInhibitionRemissionXenograftsMiceOvercoming Therapeutic Resistance in HER2-Positive Breast Cancers with CDK4/6 Inhibitors
Goel S, Wang Q, Watt AC, Tolaney SM, Dillon DA, Li W, Ramm S, Palmer AC, Yuzugullu H, Varadan V, Tuck D, Harris LN, Wong KK, Liu XS, Sicinski P, Winer EP, Krop IE, Zhao JJ. Overcoming Therapeutic Resistance in HER2-Positive Breast Cancers with CDK4/6 Inhibitors. Cancer Cell 2016, 29: 255-269. PMID: 26977878, PMCID: PMC4794996, DOI: 10.1016/j.ccell.2016.02.006.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBreast NeoplasmsCell Line, TumorCyclin-Dependent Kinase 4Cyclin-Dependent Kinase 6Disease Models, AnimalDrug Resistance, NeoplasmErbB ReceptorsFemaleHumansMechanistic Target of Rapamycin Complex 1MiceMice, NudeMice, TransgenicMultiprotein ComplexesNeoplasm Recurrence, LocalPhosphorylationProtein Kinase InhibitorsReceptor, ErbB-2TOR Serine-Threonine KinasesTumor Suppressor ProteinsConceptsHER2-positive breast cancerCDK4/6 inhibitorsBreast cancerEGFR/HER2Patient-derived xenograft tumorsTransgenic mouse modelInhibition of CDK4/6Tumor recurrenceXenograft tumorsMouse modelPotent suppressionTransgenic modelClinical specimensTherapeutic resistanceDual inhibitionMediate resistanceHER2CancerTSC2 phosphorylationG1 arrestCellular senescenceTherapyRb phosphorylationTumorsCDK4/6Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer
Shu S, Lin CY, He HH, Witwicki RM, Tabassum DP, Roberts JM, Janiszewska M, Jin Huh S, Liang Y, Ryan J, Doherty E, Mohammed H, Guo H, Stover DG, Ekram MB, Peluffo G, Brown J, D’Santos C, Krop I, Dillon D, McKeown M, Ott C, Qi J, Ni M, Rao P, Duarte M, Wu S, Chiang C, Anders L, Young R, Winer E, Letai A, Barry W, Carroll J, Long H, Brown M, Shirley Liu X, Meyer C, Bradner J, Polyak K. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature 2016, 529: 413-417. PMID: 26735014, PMCID: PMC4854653, DOI: 10.1038/nature16508.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAzepinesBinding, CompetitiveCasein Kinase IICell Cycle ProteinsCell Line, TumorCell ProliferationChromatinDrug Resistance, NeoplasmEpigenesis, GeneticFemaleGene Expression Regulation, NeoplasticGenome, HumanHumansMediator Complex Subunit 1MiceNuclear ProteinsPhosphorylationPhosphoserineProtein BindingProtein Phosphatase 2Protein Structure, TertiaryProteomicsTranscription FactorsTranscription, GeneticTriazolesTriple Negative Breast NeoplasmsXenograft Model Antitumor Assays
2015
PIK3CAH1047R- and Her2-initiated mammary tumors escape PI3K dependency by compensatory activation of MEK-ERK signaling
Cheng H, Liu P, Ohlson C, Xu E, Symonds L, Isabella A, Muller WJ, Lin NU, Krop IE, Roberts TM, Winer EP, Arteaga CL, Zhao JJ. PIK3CAH1047R- and Her2-initiated mammary tumors escape PI3K dependency by compensatory activation of MEK-ERK signaling. Oncogene 2015, 35: 2961-2970. PMID: 26640141, PMCID: PMC4896860, DOI: 10.1038/onc.2015.377.Peer-Reviewed Original ResearchConceptsBreast cancerPIK3CA mutationsMammary tumorsHER2 amplification/overexpressionHER2-positive breast cancerHER2-positive cancersPrimary mammary tumorsHER2/HER3PIK3CA-activating mutationsHER2/neuHuman breast cancerEffective treatment approachAmplification/overexpressionCompound mouse modelMEK-ERK signalingMouse mammary glandWorse prognosisCombination therapyMammary tumorigenesisMouse modelMutant PIK3CATreatment approachesHER2Combined inhibitionCompensatory activationPI3K-p110α mediates resistance to HER2-targeted therapy in HER2+, PTEN-deficient breast cancers
Wang Q, Liu P, Spangle JM, Von T, Roberts TM, Lin NU, Krop IE, Winer EP, Zhao JJ. PI3K-p110α mediates resistance to HER2-targeted therapy in HER2+, PTEN-deficient breast cancers. Oncogene 2015, 35: 3607-3612. PMID: 26500061, PMCID: PMC4846581, DOI: 10.1038/onc.2015.406.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBreast NeoplasmsCell Line, TumorCell SurvivalClass I Phosphatidylinositol 3-KinasesDrug Resistance, NeoplasmFemaleHumansLapatinibMammary Neoplasms, ExperimentalMice, KnockoutMolecular Targeted TherapyPhosphatidylinositol 3-KinasesPhosphoinositide-3 Kinase InhibitorsProtein Kinase InhibitorsProto-Oncogene Proteins c-aktPTEN PhosphohydrolaseQuinazolinesReceptor, ErbB-2Signal TransductionThiazolesTumor BurdenXenograft Model Antitumor AssaysConceptsBreast tumorsP110β inhibitorsHuman epidermal growth factor receptor 2 (HER2) amplificationP110α inhibitionPTEN lossInhibition of HER2Treatment of HER2Human cancersPI3K pathway activationPTEN-deficient breast cancersGenetic mouse modelsPI3K/Akt signalingPTEN-deficient tumorsPI3K/AktDual HER2Therapeutic regimenHER2 inhibitionPIK3CA mutationsTumor regressionBreast cancerMouse modelXenograft modelHER2Null tumorsHER2 activation
2014
Phosphorylation of ETS1 by Src Family Kinases Prevents Its Recognition by the COP1 Tumor Suppressor
Lu G, Zhang Q, Huang Y, Song J, Tomaino R, Ehrenberger T, Lim E, Liu W, Bronson RT, Bowden M, Brock J, Krop IE, Dillon DA, Gygi SP, Mills GB, Richardson AL, Signoretti S, Yaffe MB, Kaelin WG. Phosphorylation of ETS1 by Src Family Kinases Prevents Its Recognition by the COP1 Tumor Suppressor. Cancer Cell 2014, 26: 222-234. PMID: 25117710, PMCID: PMC4169234, DOI: 10.1016/j.ccr.2014.06.026.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBinding SitesFemaleHCT116 CellsHEK293 CellsHumansMiceMice, Inbred NODMice, SCIDMolecular Sequence DataNeoplasm TransplantationPhosphorylationProtein BindingProto-Oncogene Protein c-ets-1Proto-Oncogene Protein c-ets-2Src-Family KinasesTriple Negative Breast NeoplasmsTumor BurdenUbiquitinationUbiquitin-Protein LigasesConceptsSrc family kinasesFamily kinasesTumor suppressorPhosphorylation of ETS1Ubiquitin ligase componentTumor suppressor proteinAnchorage-independent growthNeighboring tyrosine residueCOP1 substratesRegulatory phosphorylationSpecific serineThreonine residuesSrc familySuppressor proteinTyrosine residuesETS1Breast cancer cellsPhosphorylationCancer cellsNeoplastic growthKinaseSuppressorProteinOncoproteinResidues
2013
Gauging NOTCH1 Activation in Cancer Using Immunohistochemistry
Kluk MJ, Ashworth T, Wang H, Knoechel B, Mason EF, Morgan EA, Dorfman D, Pinkus G, Weigert O, Hornick JL, Chirieac LR, Hirsch M, Oh DJ, South AP, Leigh IM, Pourreyron C, Cassidy AJ, DeAngelo DJ, Weinstock DM, Krop IE, Dillon D, Brock JE, Lazar AJ, Peto M, Cho RJ, Stoeck A, Haines BB, Sathayanrayanan S, Rodig S, Aster JC. Gauging NOTCH1 Activation in Cancer Using Immunohistochemistry. PLOS ONE 2013, 8: e67306. PMID: 23825651, PMCID: PMC3688991, DOI: 10.1371/journal.pone.0067306.Peer-Reviewed Original ResearchConceptsCell lymphomaNotch1 activationNOTCH1 mutationsPeripheral T-cell lymphomaNon-small cell lung carcinomaLymphoblastic leukemia/lymphomaTriple-negative breast cancerLarge B-cell lymphomaSelection of patientsChronic lymphocytic leukemia cellsT-cell lymphomaCell lung carcinomaNegative breast cancerChronic lymphocytic leukemiaLeukemia/lymphomaB-cell lymphomaMantle cell lymphomaB-cell tumorsRole of Notch1Lymphocytic leukemia cellsLymph nodesAngioimmunoblastic lymphomaCell tumorsClinical trialsOvarian carcinomaPreclinical and Clinical Studies of Gamma Secretase Inhibitors with Docetaxel on Human Breast Tumors
Schott AF, Landis MD, Dontu G, Griffith KA, Layman RM, Krop I, Paskett LA, Wong H, Dobrolecki LE, Lewis MT, Froehlich AM, Paranilam J, Hayes DF, Wicha MS, Chang JC. Preclinical and Clinical Studies of Gamma Secretase Inhibitors with Docetaxel on Human Breast Tumors. Clinical Cancer Research 2013, 19: 1512-1524. PMID: 23340294, PMCID: PMC3602220, DOI: 10.1158/1078-0432.ccr-11-3326.Peer-Reviewed Original ResearchConceptsBreast cancer stem cellsGamma-secretase inhibitorsAdvanced breast cancerClinical trialsBreast cancerSecretase inhibitorsMaximum-tolerated doseEfficacy of docetaxelSerial tumor biopsiesNotch pathwayTumors of patientsDoses of MKConcurrent clinical trialsHuman breast tumorsNotch pathway inhibitorsCancer stem cellsManageable toxicityTumorgraft modelsDocetaxel treatmentBCSC markersSerial biopsiesConventional therapyPreclinical dataClinical studiesExperimental therapiesBeyond trastuzumab and lapatinib: new options for HER2-positive breast cancer .
Zardavas D, Cameron D, Krop I, Piccart M. Beyond trastuzumab and lapatinib: new options for HER2-positive breast cancer . American Society Of Clinical Oncology Educational Book 2013, 33: e2-e11. PMID: 23714441, DOI: 10.1200/edbook_am.2013.33.e2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, Monoclonal, HumanizedAntineoplastic AgentsBreast NeoplasmsChemotherapy, AdjuvantDrug Resistance, NeoplasmFemaleHumansLapatinibMolecular Targeted TherapyNeoadjuvant TherapyProtein Kinase InhibitorsQuinazolinesReceptor, ErbB-2Signal TransductionTrastuzumabTreatment OutcomeConceptsHER2-positive breast cancerDual HER2 blockadeAntibody-drug conjugatesHER2 blockadeBreast cancerMetastatic settingClinical trialsAnti-HER2 resistanceAnti-HER2 agentsLarge randomized trialsHER2-targeted agentsNew treatment optionsAggressive biologic behaviorMajor clinical issueImproved treatment outcomesNew therapeutic avenuesDevelopment of agentsAdjuvant settingNeoadjuvant settingAdvanced diseaseTrastuzumab-DM1Randomized trialsTreatment optionsBiologic rationaleHER2 inhibition
2008
Short Preoperative Treatment With Erlotinib Inhibits Tumor Cell Proliferation in Hormone Receptor–Positive Breast Cancers
Guix M, de Matos Granja N, Meszoely I, Adkins TB, Wieman BM, Frierson KE, Sanchez V, Sanders ME, Grau AM, Mayer IA, Pestano G, Shyr Y, Muthuswamy S, Calvo B, Krontiras H, Krop IE, Kelley MC, Arteaga CL. Short Preoperative Treatment With Erlotinib Inhibits Tumor Cell Proliferation in Hormone Receptor–Positive Breast Cancers. Journal Of Clinical Oncology 2008, 26: 897-906. PMID: 18180460, DOI: 10.1200/jco.2007.13.5939.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAnimalsAntineoplastic AgentsBiomarkers, TumorBreast NeoplasmsCell ProliferationChemotherapy, AdjuvantErbB ReceptorsErlotinib HydrochlorideFemaleHumansImmunohistochemistryIn Situ Nick-End LabelingKi-67 AntigenMiceMice, NudeMiddle AgedNeoadjuvant TherapyNeoplasm StagingNeoplasms, Hormone-DependentProtein Kinase InhibitorsProtein-Tyrosine KinasesQuinazolinesReceptor, ErbB-2Receptors, EstrogenReceptors, ProgesteroneSignal TransductionTandem Mass SpectrometryTreatment OutcomeXenograft Model Antitumor AssaysConceptsTumor cell proliferationBreast cancerPreoperative treatmentCell proliferationHormone receptor-positive breast cancerP-S6P-AktEpidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinibHormone receptor-positive cancersReceptor-positive breast cancerHuman epidermal growth factor receptor 2Epidermal growth factor receptor 2ER-positive breast cancerP-EGFRTyrosine kinase inhibitor erlotinibTriple-negative breast cancerP-MAPKImmediate preoperative periodUntreated breast cancerGrowth factor receptor 2Day of surgeryInvasive breast cancerReceptor-positive cancersTriple-negative cancersKinase inhibitor erlotinib
2005
A Putative Role for Psoriasin in Breast Tumor Progression
Krop I, März A, Carlsson H, Li X, Bloushtain-Qimron N, Hu M, Gelman R, Sabel MS, Schnitt S, Ramaswamy S, Kleer CG, Enerbäck C, Polyak K. A Putative Role for Psoriasin in Breast Tumor Progression. Cancer Research 2005, 65: 11326-11334. PMID: 16357139, DOI: 10.1158/0008-5472.can-05-1523.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBiomarkers, TumorBreast NeoplasmsCalcium-Binding ProteinsCarcinoma, Intraductal, NoninfiltratingCollagenasesDisease ProgressionDown-RegulationFemaleHumansMatrix Metalloproteinase 13MiceMice, NudeNeovascularization, PathologicReceptors, EstrogenRNA, MessengerRNA, Small InterferingS100 Calcium Binding Protein A7S100 ProteinsTumor Cells, CulturedVascular Endothelial Growth Factor AConceptsReactive oxygen speciesInvasive breast carcinomaBreast tumor progressionVascular endothelial growth factorTumor progressionMitochondrial reactive oxygen speciesPsoriasin expressionStable short hairpin RNAShort hairpin RNAAnti-invasive functionPutative functionsHuman IBC cell linesEstrogen receptor-negative tumorsHuman invasive breast carcinomasHairpin RNAHigh psoriasin expressionIBC cell linesWorse clinical outcomesCell migrationPoor prognostic factorReceptor-negative tumorsPutative roleInhibits tumor growthMatrix metalloproteinase-13Cell proliferation
2002
Novel estrogen and tamoxifen induced genes identified by SAGE (Serial Analysis of Gene Expression)
Seth P, Krop I, Porter D, Polyak K. Novel estrogen and tamoxifen induced genes identified by SAGE (Serial Analysis of Gene Expression). Oncogene 2002, 21: 836-843. PMID: 11850811, DOI: 10.1038/sj.onc.1205113.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBreast NeoplasmsDioxygenasesEstrogen AntagonistsEstrogensFemaleGene Expression ProfilingHypoxia-Inducible Factor-Proline DioxygenasesIn Situ HybridizationMolecular Sequence DataNuclear ProteinsOligonucleotide Array Sequence AnalysisPhylogenyProcollagen-Proline DioxygenaseReceptors, EstrogenRNA, NeoplasmSequence Homology, Amino AcidTamoxifenTranscriptional ActivationTumor Cells, CulturedConceptsNovel nuclear proteinLigand-dependent transcription factorsDirect transcriptional targetGene expression profilesImmediate early genesTranscriptional targetsTranscription factorsEstrogen-dependent breast cancer cell linesNuclear proteinsSAGE technologyExpression profilesConstitutive expressionHuman breast cancer cellsBreast cancer cellsGenesBreast cancer cell linesCell growthCancer cell linesInitial characterizationNew memberColony growthCancer cellsCell linesNovel estrogenEstrogen receptor