Repeated treatment with electroconvulsive seizures induces HDAC2 expression and down-regulation of NMDA receptor-related genes through histone deacetylation in the rat frontal cortex
Park H, Yu H, Park S, Ahn Y, Kim Y, Kim H. Repeated treatment with electroconvulsive seizures induces HDAC2 expression and down-regulation of NMDA receptor-related genes through histone deacetylation in the rat frontal cortex. The International Journal Of Neuropsychopharmacology 2014, 17: 1487-1500. PMID: 24606669, DOI: 10.1017/s1461145714000248.Peer-Reviewed Original ResearchMeSH KeywordsAcetylationAnalysis of VarianceAnimalsButyric AcidChromatin ImmunoprecipitationDisease Models, AnimalElectroshockFrontal LobeGene Expression RegulationGlial Fibrillary Acidic ProteinHistamine AntagonistsHistone Deacetylase 2MalePhosphopyruvate HydrataseRatsRats, Sprague-DawleyReceptors, N-Methyl-D-AspartateRNA, MessengerSeizuresSignal TransductionConceptsSignaling-related genesHistone deacetylasesHistone modificationsHistone acetylationCalcium/calmodulin-dependent protein kinase II alphaChromatin immunoprecipitation analysisRat frontal cortexEarly growth response 1Transcriptional repressionReceptor-related genesHistone deacetylationH4 proteinN-methyl-D-aspartate 2ATarget genesFrontal cortexImmunoprecipitation analysisElectroconvulsive seizuresGene expressionResponse 1GenesHDAC2 expressionNeuronal cellsECS treatmentClass I HDACsII alpha