2022
DLMM as a lossless one-shot algorithm for collaborative multi-site distributed linear mixed models
Luo C, Islam M, Sheils N, Buresh J, Reps J, Schuemie M, Ryan P, Edmondson M, Duan R, Tong J, Marks-Anglin A, Bian J, Chen Z, Duarte-Salles T, Fernández-Bertolín S, Falconer T, Kim C, Park R, Pfohl S, Shah N, Williams A, Xu H, Zhou Y, Lautenbach E, Doshi J, Werner R, Asch D, Chen Y. DLMM as a lossless one-shot algorithm for collaborative multi-site distributed linear mixed models. Nature Communications 2022, 13: 1678. PMID: 35354802, PMCID: PMC8967932, DOI: 10.1038/s41467-022-29160-4.Peer-Reviewed Original Research
2021
Privacy-protecting, reliable response data discovery using COVID-19 patient observations
Kim J, Neumann L, Paul P, Day M, Aratow M, Bell D, Doctor J, Hinske L, Jiang X, Kim K, Matheny M, Meeker D, Pletcher M, Schilling L, SooHoo S, Xu H, Zheng K, Ohno-Machado L, Anderson D, Anderson N, Balacha C, Bath T, Baxter S, Becker-Pennrich A, Bernstam E, Carter W, Chau N, Choi Y, Covington S, DuVall S, El-Kareh R, Florian R, Follett R, Geisler B, Ghigi A, Gottlieb A, Hu Z, Ir D, Knight T, Koola J, Kuo T, Lee N, Mansmann U, Mou Z, Murphy R, Neumann L, Nguyen N, Niedermayer S, Park E, Perkins A, Post K, Rieder C, Scherer C, Soares A, Soysal E, Tep B, Toy B, Wang B, Wu Z, Zhou Y, Zucker R. Privacy-protecting, reliable response data discovery using COVID-19 patient observations. Journal Of The American Medical Informatics Association 2021, 28: 1765-1776. PMID: 34051088, PMCID: PMC8194878, DOI: 10.1093/jamia/ocab054.Peer-Reviewed Original Research
2019
Learning from electronic health records across multiple sites: A communication-efficient and privacy-preserving distributed algorithm
Duan R, Boland M, Liu Z, Liu Y, Chang H, Xu H, Chu H, Schmid C, Forrest C, Holmes J, Schuemie M, Berlin J, Moore J, Chen Y. Learning from electronic health records across multiple sites: A communication-efficient and privacy-preserving distributed algorithm. Journal Of The American Medical Informatics Association 2019, 27: 376-385. PMID: 31816040, PMCID: PMC7025371, DOI: 10.1093/jamia/ocz199.Peer-Reviewed Original ResearchParsing clinical text using the state-of-the-art deep learning based parsers: a systematic comparison
Zhang Y, Tiryaki F, Jiang M, Xu H. Parsing clinical text using the state-of-the-art deep learning based parsers: a systematic comparison. BMC Medical Informatics And Decision Making 2019, 19: 77. PMID: 30943955, PMCID: PMC6448179, DOI: 10.1186/s12911-019-0783-2.Peer-Reviewed Original Research
2015
Identifying risk factors for heart disease over time: Overview of 2014 i2b2/UTHealth shared task Track 2
Stubbs A, Kotfila C, Xu H, Uzuner Ö. Identifying risk factors for heart disease over time: Overview of 2014 i2b2/UTHealth shared task Track 2. Journal Of Biomedical Informatics 2015, 58: s67-s77. PMID: 26210362, PMCID: PMC4978189, DOI: 10.1016/j.jbi.2015.07.001.Peer-Reviewed Original ResearchMeSH KeywordsAgedBostonCohort StudiesComorbidityComputer SecurityConfidentialityCoronary Artery DiseaseData MiningDiabetes ComplicationsElectronic Health RecordsFemaleHumansIncidenceLongitudinal StudiesMaleMiddle AgedNarrationNatural Language ProcessingPattern Recognition, AutomatedRisk AssessmentVocabulary, ControlledConceptsCoronary artery diseaseRisk factorsLongitudinal medical recordsMedical recordsMedical risk factorsArtery diseaseDiabetic patientsSmoking statusHeart diseaseFamily historyI2b2/UTHealth natural language processingDiseaseI2b2/UTHealthProgressionUTHealthHypertensionHyperlipidemiaFactorsObesityDiabetesPatients