2019
Recognizing software names in biomedical literature using machine learning
Wei Q, Zhang Y, Amith M, Lin R, Lapeyrolerie J, Tao C, Xu H. Recognizing software names in biomedical literature using machine learning. Health Informatics Journal 2019, 26: 21-33. PMID: 31566474, PMCID: PMC7334865, DOI: 10.1177/1460458219869490.Peer-Reviewed Original ResearchConceptsSoftware namesF-measureNatural language processing methodsBiomedical literatureWord representation featuresLanguage processing methodsEntity recognition systemSoftware catalogSoftware repositoriesFeature engineeringBiomedical softwareRecognition systemSoftware toolsBiomedical domainRepresentation featuresMEDLINE abstractsWord embeddingsKnowledge featuresManual curationSoftwareMachineProcessing methodsBest systemRepositorySystem
2017
Interweaving Domain Knowledge and Unsupervised Learning for Psychiatric Stressor Extraction from Clinical Notes
Zhang O, Zhang Y, Xu J, Roberts K, Zhang X, Xu H. Interweaving Domain Knowledge and Unsupervised Learning for Psychiatric Stressor Extraction from Clinical Notes. Lecture Notes In Computer Science 2017, 10351: 396-406. DOI: 10.1007/978-3-319-60045-1_41.Peer-Reviewed Original ResearchNatural language processing systemsWord representation featuresPsychiatric stressorsLanguage processing systemDeep learningDomain knowledgeElectronic health recordsUnsupervised learningInexact matchingClinical notesF-measureRepresentation featuresProcessing systemHealth recordsPsychiatric notesImportant problemMultiple sourcesExperimental resultsLearningAlgorithmChallengesMatchingNarrative textStressor dataRecall
2016
Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning
Zhang Y, Xu J, Chen H, Wang J, Wu Y, Prakasam M, Xu H. Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning. Database 2016, 2016: baw049. PMID: 27087307, PMCID: PMC4834204, DOI: 10.1093/database/baw049.Peer-Reviewed Original ResearchConceptsMachine learning-based systemsLearning-based systemConditional Random FieldsDomain knowledgeEntity recognitionMatthews correlation coefficientDrug Named Entity RecognitionBioCreative V challengeInformation extraction systemWord representation featuresUnsupervised feature learningUnsupervised learning algorithmNamed Entity RecognitionSemantic type informationSupport vector machinePrecision-recall curveBrown clusteringFeature learningFeature engineeringUnsupervised featureIndividual subtasksMining systemNER taskLearning algorithmCPD task
2015
A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature
Tang B, Feng Y, Wang X, Wu Y, Zhang Y, Jiang M, Wang J, Xu H. A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature. Journal Of Cheminformatics 2015, 7: s8. PMID: 25810779, PMCID: PMC4331698, DOI: 10.1186/1758-2946-7-s1-s8.Peer-Reviewed Original ResearchMachine learning-based systemsConditional Random FieldsLearning-based systemEntity recognition systemSupport vector machineEntity recognitionRecognition systemF-measureChallenge organizersDrug Named Entity RecognitionVector machineStructured support vector machineMicro F-measureInformation extraction tasksWord representation featuresNamed Entity RecognitionTest setRandom fieldsPrimary evaluation measureBrown clusteringDocument indexingIndividual subtasksExtraction taskRandom IndexingBiomedical domain
2014
Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks
Tang B, Cao H, Wang X, Chen Q, Xu H. Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks. BioMed Research International 2014, 2014: 240403. PMID: 24729964, PMCID: PMC3963372, DOI: 10.1155/2014/240403.Peer-Reviewed Original ResearchConceptsBiomedical Named Entity RecognitionWord representationsNamed Entity Recognition (NER) taskMachine learning-based approachWord representation featuresNatural language processingLearning-based approachEntity recognition taskNamed Entity RecognitionCluster-based representationJNLPBA corpusEntity recognitionBiomedical domainF-measureLanguage processingRepresentation featuresWord embeddingsRecognition taskWR algorithmDistributional representationsTaskBetter performanceAlgorithmRepresentationDifferent types
2013
Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features
Tang B, Cao H, Wu Y, Jiang M, Xu H. Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features. BMC Medical Informatics And Decision Making 2013, 13: s1. PMID: 23566040, PMCID: PMC3618243, DOI: 10.1186/1472-6947-13-s1-s1.Peer-Reviewed Original ResearchConceptsStructural support vector machineWord representation featuresClinical NER tasksConditional Random FieldsSupport vector machinePerformance of MLClinical NER systemMachine learningRepresentation featuresNER systemNER taskVector machineEntity recognitionNatural language processing researchSequential labeling algorithmClinical entity recognitionLarge margin theoryClinical text processingLanguage processing researchPerformance of CRFsHighest F-measureClinical NLP researchI2b2 NLP challengeSame feature setsBetter performance