2023
Development of a Natural Language Processing Tool to Extract Acupuncture Point Location Terms
Li Y, Peng X, Li J, Peng S, Pei D, Tao C, Xu H, Hong N. Development of a Natural Language Processing Tool to Extract Acupuncture Point Location Terms. 2023, 00: 344-351. DOI: 10.1109/ichi57859.2023.00053.Peer-Reviewed Original ResearchAcupuncture point locationsNatural language processingRecurrent neural networkConditional random fieldWorld Health OrganizationWorld Health Organization standardsNatural language processing toolsEffect of acupuncture therapyLocation informationAcupuncture researchAcupuncture therapyAcupoint locationRecurrent neural network modelDictionary lookup methodNatural language processing modelsDeep learning techniquesAcupunctureLanguage processing toolsWestern Pacific RegionFree-text formatInternational anatomical terminologyHealth OrganizationF1 scoreInformatics applicationsNeural networkPrediction of Brain Metastases Development in Patients With Lung Cancer by Explainable Artificial Intelligence From Electronic Health Records
Li Z, Li R, Zhou Y, Rasmy L, Zhi D, Zhu P, Dono A, Jiang X, Xu H, Esquenazi Y, Zheng W. Prediction of Brain Metastases Development in Patients With Lung Cancer by Explainable Artificial Intelligence From Electronic Health Records. JCO Clinical Cancer Informatics 2023, 7: e2200141. PMID: 37018650, PMCID: PMC10281421, DOI: 10.1200/cci.22.00141.Peer-Reviewed Original ResearchConceptsBrain metastasesExplainable artificial intelligenceFeature attribution methodsLung cancerEHR dataArtificial intelligenceCerner Health Facts databaseBM developmentExplainable artificial intelligence approachBrain metastasis developmentHealth Facts databaseElectronic health record dataRecurrent neural network modelArtificial intelligence approachHealth record dataModel decision processStructured EHR dataNeural network modelDecision processAttribution methodsHigh-quality cohortElectronic health recordsPrompt treatmentMetastasis developmentIntelligence approach
2022
Recurrent neural network models (CovRNN) for predicting outcomes of patients with COVID-19 on admission to hospital: model development and validation using electronic health record data
Rasmy L, Nigo M, Kannadath B, Xie Z, Mao B, Patel K, Zhou Y, Zhang W, Ross A, Xu H, Zhi D. Recurrent neural network models (CovRNN) for predicting outcomes of patients with COVID-19 on admission to hospital: model development and validation using electronic health record data. The Lancet Digital Health 2022, 4: e415-e425. PMID: 35466079, PMCID: PMC9023005, DOI: 10.1016/s2589-7500(22)00049-8.Peer-Reviewed Original ResearchConceptsLight Gradient Boost MachineFeature engineeringGradient-boosting machineMultiple machine learning modelsElectronic health record dataNeural network-based modelReal-world datasetsRecurrent neural network modelComplex feature engineeringMachine learning modelsBinary classification taskSpecific feature selectionLogistic regression algorithmNeural network modelHealth record dataRecurrent neural network-based modelBinary classification modelNetwork-based modelTraditional machineExtensive data preprocessingHigh prediction accuracyMultiple external datasetsClassification taskData preprocessingFeature selection