2019
Recognizing software names in biomedical literature using machine learning
Wei Q, Zhang Y, Amith M, Lin R, Lapeyrolerie J, Tao C, Xu H. Recognizing software names in biomedical literature using machine learning. Health Informatics Journal 2019, 26: 21-33. PMID: 31566474, PMCID: PMC7334865, DOI: 10.1177/1460458219869490.Peer-Reviewed Original ResearchConceptsSoftware namesF-measureNatural language processing methodsBiomedical literatureWord representation featuresLanguage processing methodsEntity recognition systemSoftware catalogSoftware repositoriesFeature engineeringBiomedical softwareRecognition systemSoftware toolsBiomedical domainRepresentation featuresMEDLINE abstractsWord embeddingsKnowledge featuresManual curationSoftwareMachineProcessing methodsBest systemRepositorySystem
2017
Search Datasets in Literature: A Case Study of GWAS.
Dong X, Zhang Y, Xu H. Search Datasets in Literature: A Case Study of GWAS. AMIA Joint Summits On Translational Science Proceedings 2017, 2017: 40-49. PMID: 28815103, PMCID: PMC5543360.Peer-Reviewed Original ResearchRecognition systemMEDLINE abstractsDataset search enginePattern-based rulesText mining methodsData setsUnderlying data setSearch datasetsData discoverabilityUse casesSearch enginesDataset attributesMining methodsF-measureDomain dictionaryScalable approachHybrid approachDatasetFinderRetrieving literatureDiscoverabilityUltimate goalCase studySetScientific publications
2015
A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature
Tang B, Feng Y, Wang X, Wu Y, Zhang Y, Jiang M, Wang J, Xu H. A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature. Journal Of Cheminformatics 2015, 7: s8. PMID: 25810779, PMCID: PMC4331698, DOI: 10.1186/1758-2946-7-s1-s8.Peer-Reviewed Original ResearchMachine learning-based systemsConditional Random FieldsLearning-based systemEntity recognition systemSupport vector machineEntity recognitionRecognition systemF-measureChallenge organizersDrug Named Entity RecognitionVector machineStructured support vector machineMicro F-measureInformation extraction tasksWord representation featuresNamed Entity RecognitionTest setRandom fieldsPrimary evaluation measureBrown clusteringDocument indexingIndividual subtasksExtraction taskRandom IndexingBiomedical domain
2012
Recognition of medication information from discharge summaries using ensembles of classifiers
Doan S, Collier N, Xu H, Duy P, Phuong T. Recognition of medication information from discharge summaries using ensembles of classifiers. BMC Medical Informatics And Decision Making 2012, 12: 36. PMID: 22564405, PMCID: PMC3502425, DOI: 10.1186/1472-6947-12-36.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsArtificial IntelligenceDecision Support TechniquesFemaleHumansInformation Storage and RetrievalInstitutional Management TeamsMaleMedication SystemsNatural Language ProcessingPatient DischargePattern Recognition, AutomatedPharmaceutical PreparationsReproducibility of ResultsSemanticsSoftware DesignSupport Vector MachineConceptsConditional Random FieldsNatural language processingClinical natural language processingSupport vector machineBest F-scoreEnsemble classifierF-scoreClinical textIndividual classifiersVoting methodMajority votingLocal support vector machineSupervised machine learning methodsClinical entity recognitionClinical NLP systemsDifferent voting strategiesEntity recognition systemRule-based systemEnsemble of classifiersMachine learning methodsRule-based methodI2b2 NLP challengeEntity recognitionRecognition systemNLP systems
2011
A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries
Jiang M, Chen Y, Liu M, Rosenbloom S, Mani S, Denny J, Xu H. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. Journal Of The American Medical Informatics Association 2011, 18: 601-606. PMID: 21508414, PMCID: PMC3168315, DOI: 10.1136/amiajnl-2011-000163.Peer-Reviewed Original ResearchConceptsEntity extraction systemCenter of InformaticsConcept extractionIntegrating BiologyEntity recognition moduleEntity recognition systemConditional Random FieldsOverall F-scoreSupport vector machineRule-based moduleAssertion classificationClassification taskRecognition moduleRecognition systemML algorithmsSemantic informationTraining dataClinical textNatural languageF-measureChallenge organizersF-scoreVector machineEvaluation scriptsTraining corpus