Large language models for biomedicine: foundations, opportunities, challenges, and best practices
Sahoo S, Plasek J, Xu H, Uzuner Ö, Cohen T, Yetisgen M, Liu H, Meystre S, Wang Y. Large language models for biomedicine: foundations, opportunities, challenges, and best practices. Journal Of The American Medical Informatics Association 2024, 31: 2114-2124. PMID: 38657567, PMCID: PMC11339493, DOI: 10.1093/jamia/ocae074.Peer-Reviewed Original ResearchNatural language processingPrompt tuningNLP applicationsLanguage modelState-of-the-art performanceNLP practitionersNatural language processing applicationsBiomedical NLP applicationsPre-training datasetNatural language understandingNeural network architecture modelNatural language generationBiomedical informatics communityNetwork architecture modelAmerican Medical Informatics Association (AMIAPrompt-tuningFew-shotZero-ShotNLP challengeNLP tasksReinforcement learningHuman feedbackLanguage generationLanguage understandingEvaluation metricsPrompt Tuning in Biomedical Relation Extraction
He J, Li F, Li J, Hu X, Nian Y, Xiang Y, Wang J, Wei Q, Li Y, Xu H, Tao C. Prompt Tuning in Biomedical Relation Extraction. Journal Of Healthcare Informatics Research 2024, 8: 206-224. PMID: 38681754, PMCID: PMC11052745, DOI: 10.1007/s41666-024-00162-9.Peer-Reviewed Original ResearchFew-shot scenariosBiomedical relation extractionNatural language processingBiomedical RERelation extractionPrompt tuningState-of-the-art performanceText mining applicationsTuning modelBioCreative VISemEval-2013Knowledge graphLanguage modelMining applicationsBiomedical textOriginal inputComputational resourcesLanguage processingExternal knowledgeSpecific textsSuperior performanceDatasetEfficient approachTaskModel performance