2020
Time event ontology (TEO): to support semantic representation and reasoning of complex temporal relations of clinical events
Li F, Du J, He Y, Song H, Madkour M, Rao G, Xiang Y, Luo Y, Chen H, Liu S, Wang L, Liu H, Xu H, Tao C. Time event ontology (TEO): to support semantic representation and reasoning of complex temporal relations of clinical events. Journal Of The American Medical Informatics Association 2020, 27: 1046-1056. PMID: 32626903, PMCID: PMC7647306, DOI: 10.1093/jamia/ocaa058.Peer-Reviewed Original ResearchConceptsTime Event OntologyComplex temporal relationsEvent ontologyNatural language processing fieldTemporal relationsTime-related queriesInformation annotationProcessing fieldTemporal informationData propertiesRelation representationClinical narrativesSemantic representationElectronic health record dataRich setHealth record dataOntologyStrong capabilityReasoningSetQueriesOrder relationRecord dataRepresentationPrimitives
2015
Recognizing Disjoint Clinical Concepts in Clinical Text Using Machine Learning-based Methods.
Tang B, Chen Q, Wang X, Wu Y, Zhang Y, Jiang M, Wang J, Xu H. Recognizing Disjoint Clinical Concepts in Clinical Text Using Machine Learning-based Methods. AMIA Annual Symposium Proceedings 2015, 2015: 1184-93. PMID: 26958258, PMCID: PMC4765674.Peer-Reviewed Original Research