Large language models for biomedicine: foundations, opportunities, challenges, and best practices
Sahoo S, Plasek J, Xu H, Uzuner Ö, Cohen T, Yetisgen M, Liu H, Meystre S, Wang Y. Large language models for biomedicine: foundations, opportunities, challenges, and best practices. Journal Of The American Medical Informatics Association 2024, 31: 2114-2124. PMID: 38657567, PMCID: PMC11339493, DOI: 10.1093/jamia/ocae074.Peer-Reviewed Original ResearchNatural language processingPrompt tuningNLP applicationsLanguage modelState-of-the-art performanceNLP practitionersNatural language processing applicationsBiomedical NLP applicationsPre-training datasetNatural language understandingNeural network architecture modelNatural language generationBiomedical informatics communityNetwork architecture modelAmerican Medical Informatics Association (AMIAPrompt-tuningFew-shotZero-ShotNLP challengeNLP tasksReinforcement learningHuman feedbackLanguage generationLanguage understandingEvaluation metrics