2019
A study of deep learning approaches for medication and adverse drug event extraction from clinical text
Wei Q, Ji Z, Li Z, Du J, Wang J, Xu J, Xiang Y, Tiryaki F, Wu S, Zhang Y, Tao C, Xu H. A study of deep learning approaches for medication and adverse drug event extraction from clinical text. Journal Of The American Medical Informatics Association 2019, 27: 13-21. PMID: 31135882, PMCID: PMC6913210, DOI: 10.1093/jamia/ocz063.Peer-Reviewed Original ResearchConceptsDeep learning-based approachDeep learning approachLearning-based approachTraditional machineLearning approachNational NLP Clinical ChallengesAdverse drug event extractionOutperform traditional machineDifferent ensemble approachesConditional Random FieldsSequence labeling approachMIMIC-III databaseEvent extractionMedical domainEntity recognitionClassification componentF1 scoreClinical textRelation extractionClinical documentsVector machineEnd evaluationEnsemble approachClinical corpusMachineTime-sensitive clinical concept embeddings learned from large electronic health records
Xiang Y, Xu J, Si Y, Li Z, Rasmy L, Zhou Y, Tiryaki F, Li F, Zhang Y, Wu Y, Jiang X, Zheng W, Zhi D, Tao C, Xu H. Time-sensitive clinical concept embeddings learned from large electronic health records. BMC Medical Informatics And Decision Making 2019, 19: 58. PMID: 30961579, PMCID: PMC6454598, DOI: 10.1186/s12911-019-0766-3.Peer-Reviewed Original ResearchConceptsConcept similarity measurePositive pointwise mutual informationConcept embeddingsSimilarity measurePredictive modeling tasksLarge electronic health recordTime-sensitive informationPointwise mutual informationImportant research areaDeep learningElectronic health recordsMedical domainLarge electronic health record databaseWord2vec embeddingsTemporal dependenciesLearning methodsFastText algorithmModeling tasksResultsOur experimentsExtrinsic evaluationIntrinsic evaluationMutual informationHealth recordsDistributional representationsEmbedding
2017
An active learning-enabled annotation system for clinical named entity recognition
Chen Y, Lask T, Mei Q, Chen Q, Moon S, Wang J, Nguyen K, Dawodu T, Cohen T, Denny J, Xu H. An active learning-enabled annotation system for clinical named entity recognition. BMC Medical Informatics And Decision Making 2017, 17: 82. PMID: 28699546, PMCID: PMC5506567, DOI: 10.1186/s12911-017-0466-9.Peer-Reviewed Original ResearchConceptsNovel AL algorithmAL algorithmAnnotation timeUser studyEntity recognitionAnnotation systemNatural language processing modelsLanguage processing modelsAnnotation costMedical domainAnnotation processDifferent usersNER modelProcessing modelAlgorithmAL methodsResultsThe simulation resultsUsersSimulation resultsInformation contentFuture workRecognitionLarge numberSystemReal-life settingIntroduction: the International Conference on Intelligent Biology and Medicine (ICIBM) 2016: special focus on medical informatics and big data
Tao C, Gong Y, Xu H, Zhao Z. Introduction: the International Conference on Intelligent Biology and Medicine (ICIBM) 2016: special focus on medical informatics and big data. BMC Medical Informatics And Decision Making 2017, 17: 77. PMID: 28699553, PMCID: PMC5506607, DOI: 10.1186/s12911-017-0462-0.Peer-Reviewed Original ResearchConceptsIntelligent BiologyBig dataMedical informaticsClinical natural language processingNatural language processingSocial media applicationsData miningElectronic health recordsMedical domainData scienceLanguage processingMedia applicationsHealth recordsInformaticsSpecial themeSafety analysisMiningPersonalizationIssuesPatient safety analysesInternational ConferenceResearch articlesProcessingHealthcareRecent advances