2021
Extracting postmarketing adverse events from safety reports in the vaccine adverse event reporting system (VAERS) using deep learning
Du J, Xiang Y, Sankaranarayanapillai M, Zhang M, Wang J, Si Y, Pham H, Xu H, Chen Y, Tao C. Extracting postmarketing adverse events from safety reports in the vaccine adverse event reporting system (VAERS) using deep learning. Journal Of The American Medical Informatics Association 2021, 28: 1393-1400. PMID: 33647938, PMCID: PMC8279785, DOI: 10.1093/jamia/ocab014.Peer-Reviewed Original ResearchConceptsDeep learning algorithmsLearning-based methodsVaccine Adverse Event Reporting SystemLearning algorithmArt deep learning algorithmsDeep learning-based methodsConventional machine learning-based methodsMachine learning-based methodsConventional machine learningAdverse Event Reporting SystemGuillain-Barré syndromeLarge modelsAdverse eventsEvent Reporting SystemVAERS reportsDeep learningMachine learningEntity recognitionPeer modelInfluenza vaccine safetyNervous system disordersExact matchVaccine adverse eventsSafety reportsReporting system
2016
Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning
Zhang Y, Xu J, Chen H, Wang J, Wu Y, Prakasam M, Xu H. Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning. Database 2016, 2016: baw049. PMID: 27087307, PMCID: PMC4834204, DOI: 10.1093/database/baw049.Peer-Reviewed Original ResearchConceptsMachine learning-based systemsLearning-based systemConditional Random FieldsDomain knowledgeEntity recognitionMatthews correlation coefficientDrug Named Entity RecognitionBioCreative V challengeInformation extraction systemWord representation featuresUnsupervised feature learningUnsupervised learning algorithmNamed Entity RecognitionSemantic type informationSupport vector machinePrecision-recall curveBrown clusteringFeature learningFeature engineeringUnsupervised featureIndividual subtasksMining systemNER taskLearning algorithmCPD task
2013
Applying active learning to high-throughput phenotyping algorithms for electronic health records data
Chen Y, Carroll R, Hinz E, Shah A, Eyler A, Denny J, Xu H. Applying active learning to high-throughput phenotyping algorithms for electronic health records data. Journal Of The American Medical Informatics Association 2013, 20: e253-e259. PMID: 23851443, PMCID: PMC3861916, DOI: 10.1136/amiajnl-2013-001945.Peer-Reviewed Original ResearchConceptsActive learningUnrefined featuresSupervised Machine Learning AlgorithmsRefined featuresPhenotyping algorithmElectronic health record dataMachine Learning AlgorithmsHealth record dataVenous thromboembolismRheumatoid arthritisFeature engineeringDomain expertsDomain knowledgePhenotyping tasksLearning algorithmFeature setsLearning approachColorectal cancerAL approachCurve scorePassive learning approachHigh-throughput phenotyping methodsAlgorithmSmall setRecord data