2015
Ease of adoption of clinical natural language processing software: An evaluation of five systems
Zheng K, Vydiswaran V, Liu Y, Wang Y, Stubbs A, Uzuner Ö, Gururaj A, Bayer S, Aberdeen J, Rumshisky A, Pakhomov S, Liu H, Xu H. Ease of adoption of clinical natural language processing software: An evaluation of five systems. Journal Of Biomedical Informatics 2015, 58: s189-s196. PMID: 26210361, PMCID: PMC4974203, DOI: 10.1016/j.jbi.2015.07.008.Peer-Reviewed Original ResearchConceptsClinical NLP systemsNLP systemsNatural language processing softwareThird-party componentsUsability testing toolGroup of usersLanguage processing softwareEase of adoptionExpert evaluatorsSoftware distributionBiomedical softwareComputer scienceEnd usersUsability assessmentI2b2 challengeTesting toolsEvaluation showHuman evaluatorsSystem submissionsEase of useHealth informaticsProcessing softwareAdoption issuesUsersSpecial track
2010
Recognizing Medication related Entities in Hospital Discharge Summaries using Support Vector Machine.
Doan S, Xu H. Recognizing Medication related Entities in Hospital Discharge Summaries using Support Vector Machine. Proceedings - International Conference On Computational Linguistics 2010, 2010: 259-266. PMID: 26848286, PMCID: PMC4736747.Peer-Reviewed Original ResearchSupport vector machineHospital discharge summariesConditional Random FieldsDischarge summariesMedication namesRelated entitiesClinical textVector machineType of medicationNamed Entity Recognition (NER) taskEntity recognition taskRule-based systemBest F-scoreI2b2 NLP challengeTypes of featuresF-scoreI2b2 challengeNLP challengeNER systemSemantic featuresRecognition taskMachineData setsRandom fieldsBetter performance