2024
Extracting Systemic Anticancer Therapy and Response Information From Clinical Notes Following the RECIST Definition
Zuo X, Kumar A, Shen S, Li J, Cong G, Jin E, Chen Q, Warner J, Yang P, Xu H. Extracting Systemic Anticancer Therapy and Response Information From Clinical Notes Following the RECIST Definition. JCO Clinical Cancer Informatics 2024, 8: e2300166. PMID: 38885475, DOI: 10.1200/cci.23.00166.Peer-Reviewed Original ResearchConceptsNatural language processingDomain-specific language modelsNatural language processing systemsInformation extraction systemRule-based moduleNarrative clinical textsNLP tasksEntity recognitionText normalizationAssertion classificationLanguage modelInformation extractionClinical textElectronic health recordsLearning-basedClinical notesLanguage processingTest setSystem performanceHealth recordsResponse extractionTime-consumingAnticancer therapyInformationAssessment informationNLP Applications—Other Biomedical Texts
Roberts K, Xu H, Demner Fushman D. NLP Applications—Other Biomedical Texts. Cognitive Informatics In Biomedicine And Healthcare 2024, 429-444. DOI: 10.1007/978-3-031-55865-8_15.Peer-Reviewed Original ResearchIntroduction to Natural Language Processing of Clinical Text
Demner Fushman D, Xu H. Introduction to Natural Language Processing of Clinical Text. Cognitive Informatics In Biomedicine And Healthcare 2024, 3-11. DOI: 10.1007/978-3-031-55865-8_1.Peer-Reviewed Original ResearchNatural language processingLanguage processingComplex language processingBiomedical natural language processingClinical natural language processingLanguage generation tasksClinical language processingBiomedical language processingLanguage modelClinical textGeneration taskMachine learningDelivery of informationClinical languageLanguage
2023
Representing and utilizing clinical textual data for real world studies: An OHDSI approach
Keloth V, Banda J, Gurley M, Heider P, Kennedy G, Liu H, Liu F, Miller T, Natarajan K, V Patterson O, Peng Y, Raja K, Reeves R, Rouhizadeh M, Shi J, Wang X, Wang Y, Wei W, Williams A, Zhang R, Belenkaya R, Reich C, Blacketer C, Ryan P, Hripcsak G, Elhadad N, Xu H. Representing and utilizing clinical textual data for real world studies: An OHDSI approach. Journal Of Biomedical Informatics 2023, 142: 104343. PMID: 36935011, PMCID: PMC10428170, DOI: 10.1016/j.jbi.2023.104343.Peer-Reviewed Original ResearchConceptsNatural language processingCommon data modelTextual dataNLP solutionObservational Health Data SciencesOMOP Common Data ModelSpecific use casesObservational Medical Outcomes Partnership Common Data ModelHealth Data SciencesRepresentation of informationUse casesElectronic health recordsReal-world evidence generationData scienceClinical textData modelClinical notesLanguage processingHealth recordsLoad dataClinical documentationCurrent applicationsInformationWorkflowEvidence generation
2021
COVID-19 SignSym: a fast adaptation of a general clinical NLP tool to identify and normalize COVID-19 signs and symptoms to OMOP common data model
Wang J, Abu-El-Rub N, Gray J, Pham H, Zhou Y, Manion F, Liu M, Song X, Xu H, Rouhizadeh M, Zhang Y. COVID-19 SignSym: a fast adaptation of a general clinical NLP tool to identify and normalize COVID-19 signs and symptoms to OMOP common data model. Journal Of The American Medical Informatics Association 2021, 28: 1275-1283. PMID: 33674830, PMCID: PMC7989301, DOI: 10.1093/jamia/ocab015.Peer-Reviewed Original ResearchConceptsNatural language processing toolsCommon data modelLanguage processing toolsElectronic health recordsClinical natural language processing toolsData modelDeep learning-based modelProcessing toolsOMOP Common Data ModelPattern-based rulesObservational Medical Outcomes Partnership Common Data ModelLearning-based modelsSpecific information needsUse casesNLP toolsClinical textFree textExtensive evaluationDownloadable packageInformation needsHybrid approachResearch communityHealth recordsData sourcesHigh performance
2020
Opioid2FHIR: A system for extracting FHIR-compatible opioid prescriptions from clinical text
Wang J, Mathews W, Pham H, Xu H, Zhang Y. Opioid2FHIR: A system for extracting FHIR-compatible opioid prescriptions from clinical text. 2020, 00: 1748-1751. DOI: 10.1109/bibm49941.2020.9313258.Peer-Reviewed Original ResearchFast Healthcare Interoperability ResourcesInformation extractionNatural language processing techniquesLanguage processing techniquesMedical concept normalizationOpioid informationPost-processing rulesClinical decision supportManual effortConcept normalizationClinical textF-measureNLP applicationsPrescription recordsClinical data standardsData standardsDecision supportFree textProcessing toolsPrescription drug monitoring programsNational public health emergencyProcessing techniquesPrescription opioid overdoseDrug monitoring programsDrug overdose deaths
2019
Applying a deep learning-based sequence labeling approach to detect attributes of medical concepts in clinical text
Xu J, Li Z, Wei Q, Wu Y, Xiang Y, Lee H, Zhang Y, Wu S, Xu H. Applying a deep learning-based sequence labeling approach to detect attributes of medical concepts in clinical text. BMC Medical Informatics And Decision Making 2019, 19: 236. PMID: 31801529, PMCID: PMC6894107, DOI: 10.1186/s12911-019-0937-2.Peer-Reviewed Original ResearchConceptsSequence labeling approachMedical conceptsEntity recognitionRelation classificationClinical textDetection taskBidirectional long short-term memory networkLong short-term memory networkShort-term memory networkConditional Random FieldsSequence labeling problemTraditional methodsNLP applicationsBi-LSTMNeural architectureLabeling problemLabeling approachMemory networkNovel solutionRandom fieldsHigh accuracyEfficient wayTaskAttributesClassificationExtracting entities with attributes in clinical text via joint deep learning
Shi X, Yi Y, Xiong Y, Tang B, Chen Q, Wang X, Ji Z, Zhang Y, Xu H. Extracting entities with attributes in clinical text via joint deep learning. Journal Of The American Medical Informatics Association 2019, 26: 1584-1591. PMID: 31550346, PMCID: PMC7647140, DOI: 10.1093/jamia/ocz158.Peer-Reviewed Original ResearchConceptsBidirectional long short-term memoryShort-term memoryLong short-term memoryNatural language processingEntity recognitionChinese corpusBest F1English corpusLanguage processingJoint deep learningTaskConditional Random FieldsRelation extractionAttribute recognitionMemorySequential subtasksDeep learning methodsClinical textCost-aware active learning for named entity recognition in clinical text
Wei Q, Chen Y, Salimi M, Denny J, Mei Q, Lasko T, Chen Q, Wu S, Franklin A, Cohen T, Xu H. Cost-aware active learning for named entity recognition in clinical text. Journal Of The American Medical Informatics Association 2019, 26: 1314-1322. PMID: 31294792, PMCID: PMC6798575, DOI: 10.1093/jamia/ocz102.Peer-Reviewed Original ResearchConceptsAnnotation costUser studyActive learningAL methodsAL algorithmCost-CAUSEReal-world environmentsAnnotation taskAnnotation timeAnnotation accuracyEntity recognitionClinical textAnnotation dataPassive learningInformative examplesCurve scoreMost approachesSimulation areaUsersSyntactic featuresLearningCost measuresAlgorithmCostAnnotationA study of deep learning approaches for medication and adverse drug event extraction from clinical text
Wei Q, Ji Z, Li Z, Du J, Wang J, Xu J, Xiang Y, Tiryaki F, Wu S, Zhang Y, Tao C, Xu H. A study of deep learning approaches for medication and adverse drug event extraction from clinical text. Journal Of The American Medical Informatics Association 2019, 27: 13-21. PMID: 31135882, PMCID: PMC6913210, DOI: 10.1093/jamia/ocz063.Peer-Reviewed Original ResearchConceptsDeep learning-based approachDeep learning approachLearning-based approachTraditional machineLearning approachNational NLP Clinical ChallengesAdverse drug event extractionOutperform traditional machineDifferent ensemble approachesConditional Random FieldsSequence labeling approachMIMIC-III databaseEvent extractionMedical domainEntity recognitionClassification componentF1 scoreClinical textRelation extractionClinical documentsVector machineEnd evaluationEnsemble approachClinical corpusMachineIntegrating shortest dependency path and sentence sequence into a deep learning framework for relation extraction in clinical text
Li Z, Yang Z, Shen C, Xu J, Zhang Y, Xu H. Integrating shortest dependency path and sentence sequence into a deep learning framework for relation extraction in clinical text. BMC Medical Informatics And Decision Making 2019, 19: 22. PMID: 30700301, PMCID: PMC6354333, DOI: 10.1186/s12911-019-0736-9.Peer-Reviewed Original ResearchConceptsShortest dependency pathConvolutional neural networkNeural network architectureNatural language processingSentence sequenceRelation extractionClinical relation extractionTarget entityNetwork architectureClinical textNeural networkRepresentation moduleDependency pathsDeep learning-based approachNew neural network architectureBidirectional long short-term memory networkLong short-term memory networkDeep learning frameworkDeep neural networksShort-term memory networkLearning-based approachNovel neural approachRelation extraction datasetBi-LSTM networkSyntactic features
2018
Clinical text annotation - what factors are associated with the cost of time?
Wei Q, Franklin A, Cohen T, Xu H. Clinical text annotation - what factors are associated with the cost of time? AMIA Annual Symposium Proceedings 2018, 2018: 1552-1560. PMID: 30815201, PMCID: PMC6371268.Peer-Reviewed Original ResearchConceptsAnnotation timeClinical textNatural language processing modelsClinical corpusIndividual user behaviorEntity recognition taskLanguage processing modelsPractice of annotationCharacteristics of sentencesClinical Text AnnotationText annotationsUser behaviorIndividual usersCost of timeActive learning researchRecognition taskLearning researchProcessing modelCost modelAnnotationUsersLimited workCorpusTextTaskExtracting psychiatric stressors for suicide from social media using deep learning
Du J, Zhang Y, Luo J, Jia Y, Wei Q, Tao C, Xu H. Extracting psychiatric stressors for suicide from social media using deep learning. BMC Medical Informatics And Decision Making 2018, 18: 43. PMID: 30066665, PMCID: PMC6069295, DOI: 10.1186/s12911-018-0632-8.Peer-Reviewed Original ResearchConceptsConvolutional neural networkRecurrent neural networkDeep learningConditional Random FieldsSupport vector machineSuicide-related tweetsClinical textNeural networkPsychiatric stressorsExtra TreesBinary classifierTransfer learning strategiesEntity recognition taskSocial mediaExact matchTraditional machineAnnotation costLearning strategiesRecognition problemSharing flowInexact matchVector machineTwitter dataRecognition taskTwitterParsing clinical text: How good are the state-of-the-art deep learning based parsers?
Zhang Y, Tiryaki F, Jiang M, Xu H. Parsing clinical text: How good are the state-of-the-art deep learning based parsers? 2018, 80-81. DOI: 10.1109/ichi-w.2018.00029.Peer-Reviewed Original ResearchAdapting Word Embeddings from Multiple Domains to Symptom Recognition from Psychiatric Notes.
Zhang Y, Li H, Wang J, Cohen T, Roberts K, Xu H. Adapting Word Embeddings from Multiple Domains to Symptom Recognition from Psychiatric Notes. AMIA Joint Summits On Translational Science Proceedings 2018, 2017: 281-289. PMID: 29888086, PMCID: PMC5961810.Peer-Reviewed Original ResearchWord embeddingsClinical textTarget domainSource domainNatural language processing techniquesLanguage processing techniquesMultiple word embeddingsBaseline methodsBiomedical literatureFirst workProcessing techniquesEmbeddingPsychiatric notesMultiple domainsExperimental resultsDifferent weightsSuch informationImportant topicRecognitionDifferent approachesWikipediaInformationPersonalizationDomainText
2017
CLAMP – a toolkit for efficiently building customized clinical natural language processing pipelines
Soysal E, Wang J, Jiang M, Wu Y, Pakhomov S, Liu H, Xu H. CLAMP – a toolkit for efficiently building customized clinical natural language processing pipelines. Journal Of The American Medical Informatics Association 2017, 25: 331-336. PMID: 29186491, PMCID: PMC7378877, DOI: 10.1093/jamia/ocx132.Peer-Reviewed Original ResearchGraphic user interfaceUser interfaceUser-friendly graphic user interfaceNatural language processing systemsClinical natural language processing (NLP) systemsNatural language processing pipelineKnowledge Extraction SystemLanguage processing pipelineClinical Text AnalysisLanguage processing systemNLP componentsNLP toolkitInformation extractionNLP pipelineUse casesEntity recognitionClinical textEnd usersNLP communityProcessing pipelineProcessing systemIndividual tasksIndividual applicationsText analysisBetter performanceTowards Practical Temporal Relation Extraction from Clinical Notes: An Analysis of Direct Temporal Relations
Lee H, Zhang Y, Xu J, Tao C, Xu H, Jiang M. Towards Practical Temporal Relation Extraction from Clinical Notes: An Analysis of Direct Temporal Relations. 2017, 1272-1275. DOI: 10.1109/bibm.2017.8217842.Peer-Reviewed Original ResearchDirect temporal relationsTemporal information extraction methodsTemporal relationsTemporal relation extractionInformation extraction methodRelation extraction systemTemporal relation identificationImplicit relationsClinical textRelation extractionRelation identificationTemporal informationEvent mentionsSource documentsEntity recognition from clinical texts via recurrent neural network
Liu Z, Yang M, Wang X, Chen Q, Tang B, Wang Z, Xu H. Entity recognition from clinical texts via recurrent neural network. BMC Medical Informatics And Decision Making 2017, 17: 67. PMID: 28699566, PMCID: PMC5506598, DOI: 10.1186/s12911-017-0468-7.Peer-Reviewed Original ResearchConceptsRecurrent neural networkNatural language processingEntity recognitionClinical textTraditional machineNeural networkClinical natural language processingMedical concept extractionHand-crafted featuresClinical entity recognitionDeep learning methodsClinical event detectionConditional Random FieldsSupport vector machineI2b2 NLP challengePerformance of LSTMTypes of entitiesClinical domainsContext informationFeature engineeringConcept extractionDe-identificationEvent detectionKnowledge basesLSTM layersPsychiatric symptom recognition without labeled data using distributional representations of phrases and on-line knowledge
Zhang Y, Zhang O, Wu Y, Lee H, Xu J, Xu H, Roberts K. Psychiatric symptom recognition without labeled data using distributional representations of phrases and on-line knowledge. Journal Of Biomedical Informatics 2017, 75: s129-s137. PMID: 28624644, PMCID: PMC5705397, DOI: 10.1016/j.jbi.2017.06.014.Peer-Reviewed Original ResearchConceptsPsychiatric symptomsCandidate symptomMental disordersPsychiatric notesList of symptomsMayo ClinicClinical dataSymptom recognitionPatient experiencePersonalized preventionSymptomsAmerican Psychiatric AssociationAbstractTextClinical conceptsPsychiatric AssociationPhenotypic classificationDisordersClinical textMIMIC-IIHealthcare knowledgeConclusionSubjective descriptionsClinicDiseaseDiagnosisClinical Word Sense Disambiguation with Interactive Search and Classification.
Wang Y, Zheng K, Xu H, Mei Q. Clinical Word Sense Disambiguation with Interactive Search and Classification. AMIA Annual Symposium Proceedings 2017, 2016: 2062-2071. PMID: 28269966, PMCID: PMC5333264.Peer-Reviewed Original ResearchConceptsDomain knowledgeHuman expertsWSD modelClinical textCurrent active learning methodsWord sense disambiguation systemNatural language processing applicationsMachine learning processLanguage processing applicationsWord sense disambiguationActive learning methodsContextual wordsInteractive searchWord ambiguityLearning methodsSense disambiguationProcessing applicationsAmbiguous instancesSearch processDisambiguation systemEvaluation corpusLearning processExpertsQueriesClassifier