2013
Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy
Mani S, Chen Y, Li X, Arlinghaus L, Chakravarthy A, Abramson V, Bhave S, Levy M, Xu H, Yankeelov T. Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy. Journal Of The American Medical Informatics Association 2013, 20: 688-695. PMID: 23616206, PMCID: PMC3721158, DOI: 10.1136/amiajnl-2012-001332.Peer-Reviewed Original ResearchConceptsNeoadjuvant chemotherapyFeature selectionCycles of NACPredictive model buildingTime most patientsBreast cancer patientsImportant clinical problemCourse of therapyMachine learningDynamic contrast-enhanced MRIContrast-enhanced MRIQuantitative dynamic contrast-enhanced MRIMost patientsTreatment regimenCancer patientsClinical variablesTherapeutic responseBreast cancerPredictive modeling approachClinical problemData show promiseLogistic regressionPatientsMachineDiffusion-weighted MRI data
2010
Comparing content coverage in medical curriculum to trainee-authored clinical notes.
Denny J, Speltz P, Maddox R, Stein G, Xu H, Spickard A. Comparing content coverage in medical curriculum to trainee-authored clinical notes. AMIA Annual Symposium Proceedings 2010, 2010: 157-61. PMID: 21346960, PMCID: PMC3041398.Peer-Reviewed Original Research