2022
Assess the documentation of cognitive tests and biomarkers in electronic health records via natural language processing for Alzheimer’s disease and related dementias
Chen Z, Zhang H, Yang X, Wu S, He X, Xu J, Guo J, Prosperi M, Wang F, Xu H, Chen Y, Hu H, DeKosky S, Farrer M, Guo Y, Wu Y, Bian J. Assess the documentation of cognitive tests and biomarkers in electronic health records via natural language processing for Alzheimer’s disease and related dementias. International Journal Of Medical Informatics 2022, 170: 104973. PMID: 36577203, PMCID: PMC11325083, DOI: 10.1016/j.ijmedinf.2022.104973.Peer-Reviewed Original ResearchConceptsElectronic health recordsPatients' electronic health recordsCognitive testsCognitive test scoresFlorida health systemSeverity categoriesHealth recordsAD-related dementiaAD/ADRD researchAD/ADRDPatient levelAlzheimer's diseaseClinical narrativesHealth systemBiomarkersDifferent severityDiseaseSeverityPatientsADRD researchStandardized approachDementiaTest scoresPopulation characteristicsScores
2021
A Discrete Joint Model for Entity and Relation Extraction from Clinical Notes.
Ji Z, Ghiasvand O, Wu S, Xu H. A Discrete Joint Model for Entity and Relation Extraction from Clinical Notes. AMIA Joint Summits On Translational Science Proceedings 2021, 2021: 315-324. PMID: 34457146, PMCID: PMC8378610.Peer-Reviewed Original ResearchConceptsRelation classificationPipeline architectureClinical natural language processingNatural language processingEntity recognitionBeam searchRelation extractionClinical notesLanguage processingClassification stepEntity pairsStructured perceptronFundamental taskClinical narrativesTraditional solutionsRecognition stepError propagationArchitectureJoint modelTaskSubtasksPerceptronClinical conceptsEntitiesClassification
2020
Time event ontology (TEO): to support semantic representation and reasoning of complex temporal relations of clinical events
Li F, Du J, He Y, Song H, Madkour M, Rao G, Xiang Y, Luo Y, Chen H, Liu S, Wang L, Liu H, Xu H, Tao C. Time event ontology (TEO): to support semantic representation and reasoning of complex temporal relations of clinical events. Journal Of The American Medical Informatics Association 2020, 27: 1046-1056. PMID: 32626903, PMCID: PMC7647306, DOI: 10.1093/jamia/ocaa058.Peer-Reviewed Original ResearchConceptsTime Event OntologyComplex temporal relationsEvent ontologyNatural language processing fieldTemporal relationsTime-related queriesInformation annotationProcessing fieldTemporal informationData propertiesRelation representationClinical narrativesSemantic representationElectronic health record dataRich setHealth record dataOntologyStrong capabilityReasoningSetQueriesOrder relationRecord dataRepresentationPrimitivesRelation Extraction from Clinical Narratives Using Pre-trained Language Models.
Wei Q, Ji Z, Si Y, Du J, Wang J, Tiryaki F, Wu S, Tao C, Roberts K, Xu H. Relation Extraction from Clinical Narratives Using Pre-trained Language Models. AMIA Annual Symposium Proceedings 2020, 2019: 1236-1245. PMID: 32308921, PMCID: PMC7153059.Peer-Reviewed Original ResearchConceptsPre-trained language modelsNatural language processingLanguage modelRE tasksNLP tasksClinical narrativesRecent deep learning methodsDeep learning methodsClinical NLP tasksRelation extraction taskTraditional word embeddingsTraditional machineExtraction taskArt performanceRelation extractionBERT modelLanguage processingLearning methodsWord embeddingsShared TaskPrevious stateBiomedical literatureDifferent implementationsTaskOpen domainA Natural Language Processing Tool to Extract Quantitative Smoking Status from Clinical Narratives
Yang X, Yang H, Lyu T, Yang S, Guo Y, Bian J, Xu H, Wu Y. A Natural Language Processing Tool to Extract Quantitative Smoking Status from Clinical Narratives. 2020 IEEE International Conference On Healthcare Informatics (ICHI) 2020, 00: 1-2. PMID: 33786419, PMCID: PMC8006894, DOI: 10.1109/ichi48887.2020.9374369.Peer-Reviewed Original Research
2016
A long journey to short abbreviations: developing an open-source framework for clinical abbreviation recognition and disambiguation (CARD)
Wu Y, Denny J, Rosenbloom S, Miller R, Giuse D, Wang L, Blanquicett C, Soysal E, Xu J, Xu H. A long journey to short abbreviations: developing an open-source framework for clinical abbreviation recognition and disambiguation (CARD). Journal Of The American Medical Informatics Association 2016, 24: e79-e86. PMID: 27539197, PMCID: PMC7651947, DOI: 10.1093/jamia/ocw109.Peer-Reviewed Original ResearchConceptsClinical NLP systemsOpen-source frameworkNLP systemsClinical corpusClinical abbreviationsClinic visit notesSense inventoryKnowledge Extraction SystemAbbreviation recognitionWord sense disambiguation methodDischarge summariesF1 scoreExternal corpusClinical narrativesSense disambiguation methodSystem capabilitiesVanderbilt University Medical CenterWrapperFrequent abbreviationsDisambiguation methodMetaMapAbbreviation identificationCardsVisit notesDisambiguation
2012
Portability of an algorithm to identify rheumatoid arthritis in electronic health records
Carroll R, Thompson W, Eyler A, Mandelin A, Cai T, Zink R, Pacheco J, Boomershine C, Lasko T, Xu H, Karlson E, Perez R, Gainer V, Murphy S, Ruderman E, Pope R, Plenge R, Kho A, Liao K, Denny J. Portability of an algorithm to identify rheumatoid arthritis in electronic health records. Journal Of The American Medical Informatics Association 2012, 19: e162-e169. PMID: 22374935, PMCID: PMC3392871, DOI: 10.1136/amiajnl-2011-000583.Peer-Reviewed Original Research
2011
Modeling drug exposure data in electronic medical records: an application to warfarin.
Liu M, Jiang M, Kawai V, Stein C, Roden D, Denny J, Xu H. Modeling drug exposure data in electronic medical records: an application to warfarin. AMIA Annual Symposium Proceedings 2011, 2011: 815-23. PMID: 22195139, PMCID: PMC3243123.Peer-Reviewed Original ResearchConceptsNatural language processingMachine learning technologiesElectronic medical recordsDrug exposure informationLearning technologyLanguage processingTemporal informationInformatics frameworkClinical narrativesDrug mentionsMedical recordsDrug exposure dataFrameworkReceiver operator characteristic curveDrug exposure historyInformationDrug-related researchWarfarin exposureDrug regimensHospital admissionDrug exposureAccurate modelingDrug informationExposure informationExposure dataExtracting and integrating data from entire electronic health records for detecting colorectal cancer cases.
Xu H, Fu Z, Shah A, Chen Y, Peterson N, Chen Q, Mani S, Levy M, Dai Q, Denny J. Extracting and integrating data from entire electronic health records for detecting colorectal cancer cases. AMIA Annual Symposium Proceedings 2011, 2011: 1564-72. PMID: 22195222, PMCID: PMC3243156.Peer-Reviewed Original ResearchConceptsEntire electronic health recordElectronic health recordsNatural language processingHealth recordsStructured EHR dataMachine learningText dataNarrative text dataF-measureLanguage processingClinical narrativesEHR dataSuch tasksColorectal cancerDetection methodConcept identificationCohort of patientsColorectal cancer casesVanderbilt University HospitalCase detection methodsClinical notesCRC patientsCRC casesUniversity HospitalCancer cases
2010
MedEx: a medication information extraction system for clinical narratives
Xu H, Stenner S, Doan S, Johnson K, Waitman L, Denny J. MedEx: a medication information extraction system for clinical narratives. Journal Of The American Medical Informatics Association 2010, 17: 19-24. PMID: 20064797, PMCID: PMC2995636, DOI: 10.1197/jamia.m3378.Peer-Reviewed Original ResearchConceptsClinic visit notesVisit notesMedication informationClinical notesDischarge summariesElectronic medical record dataMedical record dataElectronic medical recordsMedication dataMedical recordsClinical dataClinical researchRecord dataHealthcare safetyDrug namesMedexF-measureClinical narrativesNatural language processing systemsInformation extraction system