2017
Entity recognition from clinical texts via recurrent neural network
Liu Z, Yang M, Wang X, Chen Q, Tang B, Wang Z, Xu H. Entity recognition from clinical texts via recurrent neural network. BMC Medical Informatics And Decision Making 2017, 17: 67. PMID: 28699566, PMCID: PMC5506598, DOI: 10.1186/s12911-017-0468-7.Peer-Reviewed Original ResearchConceptsRecurrent neural networkNatural language processingEntity recognitionClinical textTraditional machineNeural networkClinical natural language processingMedical concept extractionHand-crafted featuresClinical entity recognitionDeep learning methodsClinical event detectionConditional Random FieldsSupport vector machineI2b2 NLP challengePerformance of LSTMTypes of entitiesClinical domainsContext informationFeature engineeringConcept extractionDe-identificationEvent detectionKnowledge basesLSTM layers
2013
Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features
Tang B, Cao H, Wu Y, Jiang M, Xu H. Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features. BMC Medical Informatics And Decision Making 2013, 13: s1. PMID: 23566040, PMCID: PMC3618243, DOI: 10.1186/1472-6947-13-s1-s1.Peer-Reviewed Original ResearchConceptsStructural support vector machineWord representation featuresClinical NER tasksConditional Random FieldsSupport vector machinePerformance of MLClinical NER systemMachine learningRepresentation featuresNER systemNER taskVector machineEntity recognitionNatural language processing researchSequential labeling algorithmClinical entity recognitionLarge margin theoryClinical text processingLanguage processing researchPerformance of CRFsHighest F-measureClinical NLP researchI2b2 NLP challengeSame feature setsBetter performance
2012
Clinical entity recognition using structural support vector machines with rich features
Tang B, Cao H, Wu Y, Jiang M, Xu H. Clinical entity recognition using structural support vector machines with rich features. 2012, 13-20. DOI: 10.1145/2390068.2390073.Peer-Reviewed Original ResearchStructural support vector machineClinical entity recognitionSupport vector machineConditional Random FieldsNatural language processingEntity recognitionVector machineRich featuresNLP challengeSequential labeling algorithmLarge margin theoryUnsupervised word representationsClinical text processingConcept extraction taskLess training timeHighest F-measureTest setI2b2 NLP challengeExtraction taskTypical machineNER taskClinical textTraining timeF-measureLanguage processingRecognition of medication information from discharge summaries using ensembles of classifiers
Doan S, Collier N, Xu H, Duy P, Phuong T. Recognition of medication information from discharge summaries using ensembles of classifiers. BMC Medical Informatics And Decision Making 2012, 12: 36. PMID: 22564405, PMCID: PMC3502425, DOI: 10.1186/1472-6947-12-36.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsArtificial IntelligenceDecision Support TechniquesFemaleHumansInformation Storage and RetrievalInstitutional Management TeamsMaleMedication SystemsNatural Language ProcessingPatient DischargePattern Recognition, AutomatedPharmaceutical PreparationsReproducibility of ResultsSemanticsSoftware DesignSupport Vector MachineConceptsConditional Random FieldsNatural language processingClinical natural language processingSupport vector machineBest F-scoreEnsemble classifierF-scoreClinical textIndividual classifiersVoting methodMajority votingLocal support vector machineSupervised machine learning methodsClinical entity recognitionClinical NLP systemsDifferent voting strategiesEntity recognition systemRule-based systemEnsemble of classifiersMachine learning methodsRule-based methodI2b2 NLP challengeEntity recognitionRecognition systemNLP systems