2022
DLMM as a lossless one-shot algorithm for collaborative multi-site distributed linear mixed models
Luo C, Islam M, Sheils N, Buresh J, Reps J, Schuemie M, Ryan P, Edmondson M, Duan R, Tong J, Marks-Anglin A, Bian J, Chen Z, Duarte-Salles T, Fernández-Bertolín S, Falconer T, Kim C, Park R, Pfohl S, Shah N, Williams A, Xu H, Zhou Y, Lautenbach E, Doshi J, Werner R, Asch D, Chen Y. DLMM as a lossless one-shot algorithm for collaborative multi-site distributed linear mixed models. Nature Communications 2022, 13: 1678. PMID: 35354802, PMCID: PMC8967932, DOI: 10.1038/s41467-022-29160-4.Peer-Reviewed Original Research
2021
Comprehensive Characterization of COVID-19 Patients with Repeatedly Positive SARS-CoV-2 Tests Using a Large U.S. Electronic Health Record Database
Dong X, Zhou Y, Shu X, Bernstam E, Stern R, Aronoff D, Xu H, Lipworth L. Comprehensive Characterization of COVID-19 Patients with Repeatedly Positive SARS-CoV-2 Tests Using a Large U.S. Electronic Health Record Database. Microbiology Spectrum 2021, 9: 10.1128/spectrum.00327-21. PMID: 34406805, PMCID: PMC8552669, DOI: 10.1128/spectrum.00327-21.Peer-Reviewed Original ResearchConceptsPositive SARS-CoV-2 testSARS-CoV-2 testSecond positive testElectronic health record databaseCases of reinfectionHealth record databasePositive testPositive SARS-CoV-2 PCR test resultsSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testingSARS-CoV-2 PCR test resultsRecord databaseSevere acute respiratory syndrome coronavirus 2Intensive care unit admissionAcute respiratory syndrome coronavirus 2SARS-CoV-2 infectionRespiratory syndrome coronavirus 2Long-term health consequencesLarge electronic health record databasePotential long-term health consequencesCare unit admissionOverweight/obeseChronic medical conditionsPositive molecular testCOVID-19 patientsSyndrome coronavirus 2Leveraging a health information exchange for analyses of COVID-19 outcomes including an example application using smoking history and mortality
Tortolero G, Brown M, Sharma S, de Oliveira Otto M, Yamal J, Aguilar D, Gunther M, Mofleh D, Harris R, John J, de Vries P, Ramphul R, Serbo D, Kiger J, Banerjee D, Bonvino N, Merchant A, Clifford W, Mikhail J, Xu H, Murphy R, Wei Q, Vahidy F, Morrison A, Boerwinkle E. Leveraging a health information exchange for analyses of COVID-19 outcomes including an example application using smoking history and mortality. PLOS ONE 2021, 16: e0247235. PMID: 34081724, PMCID: PMC8174716, DOI: 10.1371/journal.pone.0247235.Peer-Reviewed Original ResearchConceptsBody mass indexCOVID-19 patientsRisk factorsTobacco useCOVID-19 fatalitiesHealth information exchangeRace/ethnicityCOVID-19Laboratory risk factorsNumber of comorbiditiesCOVID-19 cohortMultivariable logistic regressionImportant risk factorPotential risk factorsCOVID-19 outcomesFormer tobacco usersTobacco use historyLarge health information exchangeMass indexElectronic health record systemsUnfavorable outcomeClinical dataTobacco usersOutcome analysisElectronic health information